
A User’s Guide to MSES 3.05

Mark Drela

MIT Department of Aeronautics and Astronautics

July 2007

This document describes the use of the MSES multielement airfoil design/analysis system.



Contents

1 Input files 3

1.1 blade.xxx — airfoil geometry and grid domain . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 mses.xxx — runtime parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Farfield boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Variable, Constraint indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Fixed-lift Mach and Reynolds number variation . . . . . . . . . . . . . . . . . . . 11

1.2.4 Momentum/Entropy conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Artificial dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.6 Artificial dissipation level selection . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.7 Dissipation enhancement during convergence . . . . . . . . . . . . . . . . . . . . 15

1.2.8 Mixed-Inverse flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.9 Actuator Disk parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.10 Input file examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Programs 20

2.1 AIRSET — airfoil geometry manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 MSET — grid and flowfield initializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Panel solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Initial surface gridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Grid smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Initial solution file output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.5 Grid parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.6 Grid parameter saving, recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 MSES — flow solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Coarsening/refining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Iteration convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 MSIS — fast subcritical flow solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 MPOLAR — parameter-sweep calculation driver . . . . . . . . . . . . . . . . . . . . . . 27

2.6 MPOLIS — fast subcritical parameter-sweep calculation driver . . . . . . . . . . . . . . 29

2.7 MPLOT — solution plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 BL variable plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.2 Force coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.3 Individual TS wave amplitude plots . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



2.7.4 Graphics library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 MEDP — specified-pressure editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8.1 Data modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8.2 Specified-Cp editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Inverse Calculations 35

3.1 Fixed α versus CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Separation in inverse cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Modal-Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Inverse-case convergence tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Inverse Design Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Redesign rules of thumb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Optimization 38

4.1 Geometry mode input file modes.xxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Element position mode input file moves.xxx . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Multi-point optimization setup example . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 General hints 43

5.1 CPU times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Sequence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Starting difficult viscous cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 More MSES Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



1 Input files

1.1 blade.xxx — airfoil geometry and grid domain

This is a formatted file which is created by the user and is used in the initialization programMSET and
the airfoil manipulation programAIRSET to define the airfoil shape. The “xxx” is a variable extension
name which can be anything, and is generally used to distinguish the case being run.

Note: The format of the blade.xxx file has changed since MSES v 2.7. The change was done in order
to simplify the positioning of the top/bottom walls in solid-wall cases, and also to allow the airfoil and
the grid to be located anywhere in space. The “old” format of blade.xxx is still recognized by MSES v
2.9 for convenience. The old format is assumed if the second line contains five or more numbers rather
than four.

The new blade.xxx file has the following structure.

NAME (not more than 32 characters)

XINL XOUT YBOT YTOP

X(1,1) Y(1,1)

X(2,1) Y(2,1)

X(3,1) Y(3,1)

. .

. .

X(I,1) Y(I,1)

999. 999.

X(1,2) Y(1,2)

X(2,2) Y(2,2)

X(3,2) Y(3,2)

. .

. .

X(I,2) Y(I,2)

999. 999.

X(1,3) Y(1,3)

X(2,3) Y(2,3)

X(3,3) Y(3,3)

. .

. .

X(I,3) Y(I,3)

. .

. .

where,

XINL is the X-location of the left grid inlet plane, in the same coordinate system as the airfoil coordi-
nates.

XOUT is the X-location of the right grid outlet plane.
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YBOT is the Y-location of the lowest grid streamline. It is also the location of the bottom wall in
solid-wall cases.

YTOP is the Y-location of the topmost grid streamline. It is also the location of the top wall in
solid-wall cases.

For a unit airfoil located between x, y = 0, 0 and 1, 0, the recommended minimum values for the four
grid-boundary locations are:

XINL XOUT YBOT YTOP : -1.75 2.75 -2.0 2.5

These are suitable for infinite flow at low Mach numbers and moderate positive CL. For negative lift,
the magnitudes of YBOT and YTOP should be swapped to allow for the vertical grid-shifting effect of the
circulation.

At higher Mach numbers, both YBOT and YTOP should be increased somewhat in accordance with
Prandtl-Glauert scaling

YBOT YTOP ∼ 1/
√

1−M2
∞

to allow for the lateral increase in the airfoil’s compressible disturbance field. Similarly, cases with
large CL values should have both the horizontal and vertical extent of the grid increased roughly as

XINL YINL YBOT YTOP ∼
√

CL

which allows for the larger radial extent of the airfoil’s influence.

It must be stressed that the exact values of these grid parameters are not very important, since high-
order vortex+doublet farfield representation makes the solution extremely insensitive to the location of
the outer grid boundaries. This is clearly demonstrated in the separate “MSES Domain Size Sensitivity
Study” document. However, the grid must always be large enough to completely contain any embedded
supersonic zones.

X(1,1),Y(1,1) through to X(I,L),Y(I,L) are the coordinates of each airfoil element surface, starting at
the trailing edge, going round the leading edge in either direction, then going back to the trailing edge.
The individual elements are separated by a “999.0 999.0” line as indicated above. It is important that
the elements be ordered top to bottom, so that in a typical multielement configuration, the slat would
be first, the main element second, and so on.

It is strongly recommended that the airfoil be located in space near the origin. Although the
airfoil’s location doesn’t really matter to the flow solver, the solid-wall boundary conditions with a
nonzero angle of attack will rotate the entire outer grid boundary about the x, y = 0.25, 0.0 point. If
the airfoil is at some distant location and the grid is rotated about the 0.25,0.0 point, the airfoil might
try to migrate (correctly) out of the grid. Naturally, this will cause serious problems. If it is absolutely
necessary to locate the airfoil far from the origin, then one should change the center of rotation, called
XCENT,YCENT, from 0.25,0.0, to somewhere close to the airfoil. This can be done using program
MEDP , described later.

MSES can model blunt trailing edge flows to a reasonable degree of accuracy, provided the trailing
edge thickness is not too extreme. Up to a few percent of chord is generally acceptable. A blunt trailing
edge is specified if the first and last points of an element do not exactly cooincide, so that the airfoil
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is “open”. The trailing edge base spanning these points should be more or less at right angles to the
airfoil’s local camber line.

If the airfoil has a round trailing edge, it is strongly suggested that the circle be “cut off”, leaving
the airfoil open as just described. This will give a more realistic calculated blunt trailing edge flow.

A sharp corner in any element contour, such as one resulting from a flap cove, can be specified with
two identical sucessive x, y coordinate pairs. Two separate splines are then used on each side of the
corner. A corner is also significant to the MSET program, in that it indicates a point where separation
is assumed when the streamline grid is initialized. A corner also indicates a trip location in MSES .
This is done to simulate the nearly instantaneous transition which occurs in the free shear layer above
the cove recirculation region. It is a good idea to force boundary layer transition (described later) at or
just ahead of any such surface corner. Laminar separation off the corner, where the shape parameter
H = δ∗/θ can soar into the hundreds, will not be handled reliably by the free transition prediction
method. It is better to trip the flow at the corner, which is the same as assuming instant transition in
the separated shear layer.

Only one corner point per element side is currently allowed. Note that this differs from the single-
element ISES code, where a doubled point implies a sharp leading edge. MSES does not allow sharp
leading edges.

The first two lines in blade.xxx can be omitted, in which case the user will be prompted to enter
the missing information from the keyboard.

1.2 mses.xxx — runtime parameters

This is the runtime-parameter input file which is used by the solver programs MSES , MSIS , MPO-
LAR , and MPOLIS . Again, the “xxx” is arbitrary and used to distinguish a particular case.

The mses.xxx input file contains the following information:

GVAR(1) GVAR(2) ... GVAR(N)

GCON(1) GCON(2) ... GCON(N)

MACHIN CLIFIN ALFAIN

ISMOM IFFBC [ DOUXIN DOUYIN SRCEIN ] <-- optional

REYNIN ACRIT [ KTRTYP ] <-- optional

XTRS1 XTRP1 XTRS2 XTRP2 XTRS3 XTRP3 . . . .

MCRIT MUCON

[ ISMOVE ISPRES ] <-- optional (see below)

[ NMODN NPOSN ] <-- optional (see below)

[ ISDELH XCDELH PTRHIN ETAH ] <-- optional (see below)

where,

a) GVAR(1) ... GVAR(N) is a list of integers specifying the global variables to be used. The list of
possible global variables is,

3 DCIRC far-field vortex strength

4 DALFA freestream angle of attack
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5 DSBLE LE stagnation point for all elements,

mass fraction for all-1 elements

7 DDOUB x,y-doublet,source strengths

9 DPREX grid-exit static pressure

10 DREYN Reynolds number DOF

11 DPDX0 zeroth mixed inverse prescribed Pi DOF

12 DPDX1 first mixed inverse prescribed Pi DOF

13 DPDD0 second mixed inverse prescribed Pi DOF

14 DPDD1 third mixed inverse prescribed Pi DOF

15 DMASS total mass flow

16 DMAS1 first mass fraction DOF above/below configuration

20 DMODn modal geometry DOF flag n = 1, 2, ... NMODN

30 DPOSn element position DOF flag n = 1, 2, ... NPOSN

b) GCON(1) ... GCON(N) is a list of integers specifying the global constraints to be used. The list of
possible options is,

3 Set LE Kutta condition for all elements

4 Set TE Kutta condition for all elements

5 Drive alpha to ALFAIN

6 Drive CL to CLIFIN

7 Drive x,y-doublets,source to farfield match

8 Drive x,y-doublets,source to DOUXIN, DOUYIN, SRCEIN

10 Fix TE point

11 Fix left endpoint of freewall segment

12 Fix right endpoint of freewall segment

13 Fix Pxx at left endpoint of freewall segment

14 Fix Pxx at right endpoint of freewall segment

15 Drive Mach to MACHIN

16 Drive Mach*sqrt(CL) to MACHIN

17 Drive Reyn to REYNIN

18 Drive Reyn*sqrt(CL) to REYNIN

19 Drive mass-averaged inlet Pst to Pstinl

20 DMODn fixing constraint flag n = 1, 2, ... NMODN
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30 DPOSn fixing constraint flag n = 1, 2, ... NPOSN

40 DMODn inverse constraint flag n = 1, 2, ... NMODN

50 DPOSn inverse constraint flag n = 1, 2, ... NPOSN

c) MACHIN = inlet or freestream Mach number
= M/

√
CL if constraint (16) is specified

CLIFIN = specified CL (used only if CL option invoked in b)

ALFAIN = freestream angle of attack in degrees
(used only if alpha option invoked in b)

d) ISMOM = 1 → use S-momentum equation
= 2 → use isentropic condition
= 3 → use S-momentum equation, with isentropic condition only near leading edge
= 4 → use isentropic condition, with S-momentum equation only where dissipation is active

IFFBC = 1 → use solid wall airfoil far-field BCs
= 2 → use vortex+source+doublet airfoil far-field BCs (best model for infinite domains)
= 3 → use freestream pressure airfoil far-field BCs
= 4 → use supersonic wave freestream BCs
= 5 → use supersonic solid wall far-field BCs

DOUXIN = specified x-doublet strength, = Dx/V∞
L2,

DOUYIN = specified y-doublet strength, = Dy/V∞
L2,

SRCEIN = specified source strength, = Σ/V
∞
L,

with L the length unit of input airfoil coordinates.
Used only if constraint (8) is specified, otherwise can be omitted from line.

e) REYNIN = Reynolds number Re = ρ
∞
V

∞
L/µ

∞
, with L the length unit of input airfoil coordinates

= Re/
√
CL if constraint (18) is specified

= 0.0 → inviscid calculation
(restarting a viscous case with REYNIN = 0 “freezes” the BLs)

ACRIT = critical amplification factor “n” for en envelope transition model
= 9.0 is the standard model.

KTRTYP= 1 use envelope en method (default if omitted)
= 2 use frequency-tracking en method.

f) XTRSn = top (suction) surface transition strip x/chord location on element “n”.

XTRPn= bottom (pressure) surface transition strip x/chord location on element “n”.
Here, “x” is measured parallel to the element chord line which spans the element’s
widest dimension. The Orr-Sommerfeld en criterion is always active,
and free transition may occur upstream of XTRS or XTRP).
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g) MCRIT = “critical” Mach number above which artifical dissipation is added
= 0.99 usually for weak shocks
= 0.90 for exceptionally strong shocks

MUCON = artificial dissipation coefficient (1.0works well),
(A negative value disables the 2nd-order dissipation.
This is a “last-resort” option for difficult cases.)

h) ISMOVE = indicates what side(s) get altered in mixed-inverse cases
= –1 → both element sides move opposite (camber preserved)
= 0 → both element sides move together (thickness preserved)
= 1 → upper side moves
= 2 → lower side moves
= ignored in direct cases

ISPRES = indicates the pressure BC to be imposed in mixed- or modal-inverse cases
= 0 → ∆p across element is imposed
= 1 → upper side pressures imposed
= 2 → lower side pressures imposed
= ignored in direct cases

i) NMODN indicates that the n = 1,2,...NMODN modal geometry DOFs are selected
only used if DMODn flag (20) is chosen as a DOF

NPOSN indicates that the n = 1,2,...NPOSN element position DOFs are selected
only used if DPOSn flag (30) is chosen as a DOF

j) ISDELH Airfoil side to which Actuator Disk is attached
Airfoil sides are numbered 1,2. . . top to bottom

XCDELH x/c location where AD is attached on side ISDELH

PTRHIN total pressure ratio p02/p01 across AD

ETAH efficiency ηh of AD, which gives the total enthalpy ratio across the AD:

h02/h01 − 1 = 1
ηh

[

(p02/p01)
(γ−1)/γ − 1

]

1.2.1 Farfield boundary conditions

As indicated by the various IFFBC options above, there is a wide variety of farfields which can be
imposed. The most common is the infinite-flow farfield (IFFBC=2). The formulation uses the trans-
formed Prandtl-Glauert coordinates

x̄ = [(x− xo) cosα + (y − yo) sinα] /β

ȳ = −(x− xo) sinα + (y − yo) cosα

r̄ =
√

x̄2 + ȳ2

θ̄ = arctan (ȳ/x̄)

β =
√

1−M2
∞
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centered on some singularity-location point xo, yo, aligned with the freestream direction, and scaled
with β. The second-order farfield potential expansion is

φ(x, y;M
∞
,Γ,Σ,Dx,Dy) = − Γ

2π
θ̄ +

Σ

2π
ln r̄ +

Dx

2π

cos θ̄

r̄
+

Dy

2π

sin θ̄

r̄

+

(

ΓM
∞

2π

)2
[

1

4

(

3−γ

β
+

γ+1

β3

)

ln r̄ cos θ̄

r̄
+

1

16

(

γ+1

β
− γ+1

β3

)

cos 3θ̄

r̄

]

which corresponds to a vortex, source, and two doublet components at xo, yo, with a higher-order
correction for the dominant first Γ term. The strengths Γ, Σ . . . are assumed to be normalized with
V

∞
. The location xo, yo, called XCENT,YCENT in the code, is set at (0.25, 0.0) by default, but can

be changed for any give case using program MEDP . This potential is used to obtain a local velocity
and corresponding isentropic pressure

~V = V
∞
[(cosα+ ∂φ/∂x) ı̂ + (sinα+ ∂φ/∂y) ̂]

p = p0∞

[

1 − V 2

2h0∞

]γ/(γ−1)

This ~V is used at the inlet planes to set a streamline-direction boundary condition, and the p is used
on the top and bottom streamlines to set a pressure boundary condition.

The singularity strengths Γ, Σ, Dx, Dy are treated as global variables in the overall Newton system.
The Γ variable (3) is constrained with the TE Kutta condition (4). The Σ, Dx, Dy variables are
all simultaneously selected with (7), and implicitly constrained with the three least-squares farfield-
matching conditions (7).

J (Γ,Σ,Dx,Dy,M∞
~q(s)) ≡ 1

2

∫

∣

∣

∣

~V × ~q
∣

∣

∣

2
ds

RDx ≡ ∂J
∂Dx

=

∫

∣

∣

∣

~V × ~q
∣

∣

∣

∣

∣

∣

∣

∣

∂~V

∂Dx
× ~q

∣

∣

∣

∣

∣

ds = 0

RDy ≡ ∂J
∂Dy

=

∫

∣

∣

∣

~V × ~q
∣

∣

∣

∣

∣

∣

∣

∣

∂~V

∂Dy
× ~q

∣

∣

∣

∣

∣

ds = 0

RΣ ≡ ∂J
∂Σ

=

∫

∣

∣

∣

~V × ~q
∣

∣

∣

∣

∣

∣

∣

∣

∂~V

∂Σ
× ~q

∣

∣

∣

∣

∣

ds = 0

The integrals are carried over the top and bottom streamlines. If constraint (8) is selected instead, the
singularity strengths are simply set explicitly,

RDx ≡ Dx − (Dx)spec = 0

RDy ≡ Dy − (Dy)spec = 0

RΣ ≡ Σ − (Σ)spec = 0

where the specified values are given by DOUXIN, DOUYIN, SRCEIN.

If the solid-wall IFFBC=1 option is chosen, the top and bottom streamlines are simply forced to
be straight lines, tilted at the angle of attack α. The inlet and outlet flow is also imposed to have this
same direction. This can model a solid-wall wind tunnel configuration.

If the constant-pressure IFFBC=3 option is chosen, the pressure all along the outer boundary is
held at a constant p

∞
, and the streamline shapes adjust as necessary. This can model a free-jet wind

tunnel configuration.
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There are also “unofficial” IFFBC options which can represent more elaborate situations as de-
scribed below.

IFFBC=6: Similar to IFFBC=1, but enforces solid top and bottom walls of arbitrary shape y(x), rather
than the default flat walls. The wall shapes are specified in the xywall.xxx file, which is required. See
the header of SUBROUTINE FFBC1 (in ffbc.f) for the file format.

IFFBC=7: Similar to IFFBC=2 or IFFBC=3, but enforces arbitrary top and bottom wall pressure
distributions Cp(x, y) along some paths y(x) reasonably near the top and bottom grid boundaries. The
intent is to match measured wall tunnel pressures, thereby removing the tunnel blockage uncertainty.
This option requires a ffbc.xxx file to specify path shapes and pressure distributions. See the header
of SUBROUTINE FFBC2 (in ffbc.f) for the file format. Some deviation from the specified Cp(x, y)
will be created so that the TE Kutta condition can be met. This deviation will be minimal if the
Cp(x, y) pressures correspond closely to the CL value specified in ffbc.xxx. Again, see the header for
a more detailed explanation.

1.2.2 Variable, Constraint indices

In general, any number of global variables can be specified for a given solution case, as long as the same
number of global constraints are also specified. It must be kept in mind that specifying the leading
edge Kutta condition (constraint 3) produces a number of constraints equal to the number of elements,
since the Kutta condition is applied to each element. Likewise, specifying the leading edge movement
variable (variable 5), automatically adds one internal additional variable consisting of the mass flow
difference between the captured streamtubes on each side of each element after the first one. This mass
flow difference must be a variable since it is not known a priori. In any case, the total number of global
variables and constraints is reported by MSES before the solution is started. Whatever these are, it is
only necessary that all the constraints together properly constrain all the variables. For example, the
angle of attack variable ALFA (variable 4) can be constrained either by specifying it directly (constraint
5), or by specifying CL (constraint 6) instead. However, the latter cannot be used near maximum CL

as the problem will be poorly conditioned.

The global-variable and global-constraint indices in lines a) and b) can be specified in any order.
The only exception is that the modal geometry and element position global-variable indices (20,30) and
their corresponding fixing constraints (20,30) must be placed after all the other indices (1 . . . 19). This
restriction is imposed to allow the block solver SUBROUTINE SOLVE to omit solving for the modal
and position global variable influence vectors for all but the final Newton iteration. This produces
significant CPU time savings.

The DMODn (20) and DPOSn (30) variables do not necessarily have to be paired with their
respective fixing constraints (20,30) or (40,50). Alternative constraints can be used as long as the
overall system is well-posed. For example, one flap element rotation variable (DPOS1 say) can be used
in conjunction with the specified-CL constraint (6), with α being held fixed. Instead of varying α,
the code will rotate the flap until the specified CL is achieved. Alternatively, a camber mode variable
(DMOD1, say) might be selected instead of the flap rotation mode. Again, the code will alter the
camber until the prescribed CL is achieved. In contrast, using a flap translation variable in conjunction
with the specified-CL constraint is likely to produce an ill-conditioned system, since CL is only weakly
influenced by element translation.
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1.2.3 Fixed-lift Mach and Reynolds number variation

The fixed-lift Mach and Reynolds number constraints (16) and (18), which are typically used in con-
junction with the global variables (15) and (10), automatically scale the Mach and Reynolds numbers
as 1/

√
CL. This corresponds to a given aircraft wing undergoing trim speed (i.e. CL changes) at fixed

altitude. A typical application of these constraints would be to generate a fixed-lift polar to be used in
generating an overall aircraft drag polar, or to create an airfoil polar on which the low-CL Mach buffet
boundary is clearly discernable. The latter application requires care at the lowest specified angle of
attack, since there is a minimum α below which buffet sets in and no steady MSES solution exists.
In fact, there are generally two solutions for a given α and M

√
CL — the usual attached-flow branch,

and a post-buffet branch with massive separation. The latter (if it converges) has a very high CD, and
a lower CL and higher M . At the minimum α, i.e. the buffet boundary, these two branches cooincide,
and convergence becomes difficult. Close to this minimum α, the solution might jump to the post-buffet
branch from which the code usually cannot recover (this crudely mimics the Mach-tuck effect). This
situation is analogous to trying to specify CL near CLmax, where the code might jump to the post-stall
condition. To calculate a fixed-lift polar close to the buffet boundary, it is necessary to approach it
from above with quite small α decrements — 0.1◦ or less.

1.2.4 Momentum/Entropy conservation

The ISMOM flag controls whether and where S-momentum (streamwise momentum) or streamline
entropy are conserved. The streamtube-cell equation residuals for each case are:

ISMOM=1 : R1 ≡ ∆p +
m

A
∆q̃ − Ps = 0

ISMOM=2 : R2 ≡ −p∆S̃ = 0

where m is the streamtube’s mass flow and A is the streamtube’s cross-sectional area (R1 is slightly
modified for the case of a curved streamtube). Dissipation is introduced in the form of an upwinded
speed q̃ described in the next section. The upwinded entropy is defined in the standard manner, but
using the upwinded speed.

h̃ = h0 − 1

2
q̃2

S̃ = ln







(

h̃/h0∞

)γ/(γ−1)

p/p0∞







The changes ∆( ) are along the streamwise direction in the cell, and Ps is the streamwise pressure force
contribution to the cell from streamtubes above and below, arranged so that the net R1 equation is
strongly conservative.

ISMOM=1 gives a standard momentum-conserving Euler solver, while ISMOM=2 gives the equiv-
alent of a standard entropy-conserving Full-Potential solver (although the upwinding is based on the
speed, not the usual density). ISMOM=3,4 are hybrids which attempt to make the use of the best
features of the two types of solvers: correct Rankine-Hugoniot shock jumps of the Euler solver, and
zero spurious total pressure loss of the Full-Potential solver.

For ISMOM=3, the S-momentum equation R1 = 0 is used everywhere except in a region near
the leading edge, where the isentropic equation R2 = 0 is used instead. The size of the isentropic
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region is hard-wired into a data statement at the top of SUBROUTINE SETUP (in setup.f), and
typically extends from the inlet plane to ∼ 10 cells downstream of the stagnation point, and 4 cells
below and above the stagnation streamline. This should cover all typical airfoils, but can be changed
if appropriate for an unusual case. MPLOT allows the display of the momentum-conserving region
on the grid and flow contour plots, the remainder being the entropy-conserving region.

MSES v 2.8 was the first to incorporate the new ISMOM=4 option, which makes all cells isentropic
except those where aritificial dissipation contributes significantly to total pressure losses (as described
later). In practice, this is nearly the same as ISMOM=3, but it will always give momentum conser-
vation at shocks, and hence is “safer” than ISMOM=3. It also doesn’t rely on the ad-hoc hard-wired
isentropic region, and hence is more automatic. Note also that ISMOM=4 is equivalent to ISMOM=2
for subcritical cases.

Because conserving total pressure is much more important than conserving momentum (except
at shocks, of course), it is strongly recommended that ISMOM=3 or 4 be used for all flows. Even
very small total pressure errors in the vicinity of the leading edge (where they are most likely to
occur) can cause dramatic errors in lift and drag of a viscous case at near-stall conditions. This is
because for a given imposed streamwise pressure gradient dp/ds, the edge velocity gradient due/ds
which drives the viscous layers depends on the total pressure. Enforcing isentropy (even if only at the
leading edge for ISMOM=3) avoids most such problems, and hence significantly reduces grid density
requirements. With ISMOM=3, it is only necessary to ensure that no shocks traverse the isentropic
region, otherwise incorrect Rankine-Hugoniot jumps will result and the wave drag will not be properly
predicted. ISMOM=4 does not have this possible problem, and is recommended for general use.

1.2.5 Artificial dissipation

The artifical dissipation in MSES is a speed-upwinding formulation analogous to bulk viscosity. In-
stead of the actual speed q, the momentum and/or isentropy equations are defined using an upwinded
speed q̃ defined by

q̃i = qi − µ
(1)
i

(

qi − qi−1

)

+ µ
(2)
i

(

qi−1 − qi−2

)

si − si−1

si−1 − si−2

where i is the grid node index along a streamtube, s is the arc length along the streamtube, and µ
(1)
i ,

µ
(2)
i are the first- and second-order dissipation coefficients. To maintain numerical stability and allow

shock capturing, the following formulas for the dissipation coefficients are used.

µ
(1)
i =

Cµ

γ
(1−Mcrit) log

[

1 + exp

(

1− 1/M2

1−Mcrit

)]

, with M2 = 1
2(M

2
i +M2

i−1)

µ
(2)
i =







µ
(1)
i ; 2nd-order dissipation

0 ; 1st-order dissipation

In the limit Mcrit → 1, the above formula asymptotes to

µ → max

[

0 ,
Cµ

γ

(

1− 1/M2
)

]

which is the form indicated by a formal stability analysis, and is the dotted curve in Figure 1. For
Mcrit < 1, the full formula produces somewhat larger µ values, which asymptote rapidly to zero below
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M = Mcrit. The intent of introducing Mcrit is to provide a user-adjustable margin of safety. Figure 1
shows the variation of µ versus Mcrit and the overall scaling constant Cµ. Previous MSES versions used
the simpler form µ ∼ max(0, 1 −M2

crit/M
2), which has a slope discontinuity at M = Mcrit. The new

form appears to have better shock propagating properties, most likely due to its exponential “tail” for
subsonic Mach numbers.

The second-order term in the formula for q̃i above is constructed to cancel the first-order term in
the case of a linear variation of q(s). Analytically, the net result of either the first-order or second-order
upwinding is to add a term to the streamwise momentum equation

∂p

∂s
+ ρ q

∂q̃

∂s
= 0 −→ ∂p

∂s
+ ρ q

∂q

∂s
= −ρ q

∂(δq)

∂s

where δq = q̃− q is the upwinding modification to the speed. This added term is typically dissipative,
producing streamwise changes in the total pressure

1

p0

∂p0
∂s

= −γM2 1

q

∂(δq)

∂s

and is the mechanism which allows captured shocks to generate total pressure loss.

In the ISMOM=4 option, the magnitude of the fractional upwinded total pressure change over a
cell implied by a δq change is monitored:

∆ (ln p̃0) ≃ δq ∆

(

ρq

p

)

If the righthand side term is sufficiently negative, below some small tolerance −ǫp (typically at a shock),
then R1 = 0 is used instead of R2 = 0, so that this total pressure loss is realized in the solution. The
local velocity gradient is also examined, with acceleration favoring R2 and deceleration favoring R1.
To minimize the tendency for non-convergent limit cycles, the equation switch is implemented as a
continuous blend. The actual general equation solved with the ISMOM=4 option is

f R1 + (1− f)R2 = 0

where 0 ≤ f ≤ 1 is a blending fraction which depends on the local magnitude of the total pressure
loss, as well as the local speed gradient.

It should be pointed out that this seemingly ad-hoc blending of R1 and R2 is perfectly legitimate
within the accuracy of the numerical scheme, since in smooth flow these two equations are equivalent
to within O(∆s2). Hence, away from shocks, any change in f will produce a solution change of at most
O(∆s2) — the same as the truncation error of the discretization scheme.

1.2.6 Artificial dissipation level selection

The magnitude of the upwinding (e.g. magnitude of δq) is controlled by the approximate threshold
Mcrit (MCRIT), and the weighting factor Cµ (MUCON). If MUCON is specified as negative, then
Cµ = |MUCON|, and µ(2) = 0.

Lowering Mcrit and increasing Cµ both increase the amount of upwinding, but in different ways
as shown in Figure 1. The effect of Cµ on the numerical normal-shock profile is shown in Figure 2.
In general, Cµ ≃ 1 gives the cleanest normal shocks. For oblique shocks, the effective coefficient is
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M
M 1crit

M
Mcrit

reduction of Mcrit increase of Cµ
µµ

Figure 1: Effect of dissipation parameters Mcrit and Cµ on dissipation level.

C > 1C = 1C < 1C < C min

(unstable)

Figure 2: Effect of the dissipation weight Cµ on the numerical structure of a captured shock. Assumes
Mcrit ≃ 1.

Cµ/ cos
2 θ, with θ being the shock angle. This favors somewhat smaller values of Cµ. The stability

analysis indicates that in general the minimum allowable coefficients are

1st-order dissipation: Cµmin = 1/2
2nd-order dissipation: Cµmin = 1/4

with Mcrit ≤ 1 being required in all cases. Violation of these thresholds will produce numerical
instability and a nearly-singular Newton matrix.

Reduction of Mcrit mainly has an effect where locally M ≃ 1. Specifically, the sharp subsonic
recovery downstream of the shock is smeared if the post-shock Mach number falls significantly above
Mcrit, as shown in Figure 3. Hence, reduction of Mcrit tends to smear weak shocks, but has little effect
on strong shocks – a rather undesirable situation. It is therefore desirable to set Mcrit just below 1.0
to give a small margin of safety against numerical instability.

The second-order dissipation substantially reduces spurious total pressure errors wherever the S-
momentum equation is used, compared to the original first-order dissipation. It also gives crisper shocks
for a given value of Cµ, gives more reliable shock loss results, and is nice in general. The benefits are
greatest for weak oblique shocks, which tend to be quite heavily smeared with first-order dissipation.

First-order dissipation may also be required in certain cases where the second-order dissipation
cannot maintain numerical stability even with a large Cµ. The most common source of difficulty is a
normal shock traversing a sheared grid, especially when the local streamtube cell aspect ratio A/∆s is
large, as is typical in the outermost streamtubes. The shearing is typically caused by the quasi-normal
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M

Mcrit

M

1

Figure 3: Effect of the dissipation threshold Mcrit on the numerical structure of weak and strong
captured shocks. Assumes Cµ ≃ 1.

grid lines fanning out away from the airfoil. This fanning can reduced by increasing the “X-spacing
parameter” in the MSET grid parameter change menu (described later). Increasing the number of
points over the inlet and outlet streamlines also reduces this fanning out.

1.2.7 Dissipation enhancement during convergence

The movement of a captured shock tends to be a slow process, with the movement distance per Newton
iteration being limited to the smeared shock’s thickness. An ideally-resolved shock can therefore move
at most one or two cells per iteration, which is deemed unacceptable. To speed up this process,
MSES takes the liberty of temporarily reducing Mcrit and/or increasing Cµ to smear the shock as
much as possible so that it can move as fast as possible. The reduction of Mcrit is especially effective
here, since this smears the subsonic side of the shock, allowing it to move many cells per Newton
iteration. The reduction is based on the maximum fractional density change from the previous Newton
step,

δρ̄ = | δρ/ρ |max

which typically is large at a moving shock.

The temporary value used for Mcrit is

(Mcrit)temp = 0.75 + (Mcrit − 0.75) exp
(

−r2
)

where r =
δρ̄

ε

or r =
δρ̄3

ε (δρ̄2 + (ε/4)2)

and ε = 0.15 is a reasonable threshold. When δρ̄ is large, the exponential is negligibly small, giving
the decreased value of (Mcrit)temp. As the shock reaches its destination, δρ̄ decreases, and (Mcrit)temp

reverts to its prescribed value, which then sharpens the shock. The two forms for the argument r give
nearly the same results, except very close to convergence where δρ̄ is small. The simple form for r gives
1 − O(δρ̄2) for the Gaussian, while the second more complicated form gives 1 − O(δρ̄6). Both forms
give terminal quadratic convergence of the overall Newton scheme, but the second form has a larger
basin of attraction and is preferred for this reason.

15



The “old” fractional density change δρ̄ is saved in the mdat.xxx file, so that the overall process is
automated, and is not outwardly visible to the user even if the Newton iteration is halted and then
restarted.

1.2.8 Mixed-Inverse flags

Note that the flags ISMOVE and ISPRES do not indicate the target element for Mixed-Inverse. That
information is contained in mdat.xxx, and corresponds to the last-edited element in MEDP before
mdat.xxx was written out.

1.2.9 Actuator Disk parameters

MSES has the ability to model a fan as an actuator disk, which introduces momentum and energy
sources into the flow. The S-momentum residuals are modified to the following form:

ISMOM=1 : R1 ≡ ∆p +
m

A
∆q̃ − Ps − ρ(∆h0)AD + p(∆S)AD = 0

ISMOM=2 : R2 ≡ −p∆S̃ + p(∆S)AD = 0

The (∆h0)AD and (∆S)AD quantities are nonzero only in cells containing the actuator disk, and are
specified via the total-pressure ratio and the efficiency.

τAD ≡ h02/h01

πAD ≡ p02/p01 (specified by PTRHIN)

ηh ≡ π
(γ−1)/γ
AD − 1

τAD − 1
(specified by ETAH)

(∆h0)AD =
h01
ηh

(

π
(γ−1)/γ
AD − 1

)

= h02 − h01

(∆S)AD =
γ

γ−1
ln

[

h02
h01 + ηh(∆h0)AD

]

For low speed flows, it is sometimes more convenient to work with the total pressure rise coefficient
∆Cp0 rather than πAD. The following relations are useful for translating between these two alternative
parameters.

p02 − p01
1
2ρ∞

V 2
∞

≡ ∆Cp0 = (πAD − 1)
2

γM2
∞

[

1 +
γ−1

2
M2

∞

]γ/(γ−1)

πAD = 1 + ∆Cp0

γM2
∞

2

[

1 +
γ−1

2
M2

∞

]

−γ/(γ−1)

The relations above are exact. For low speed flows, M2
∞

≪ 1, they can be simplified by omitting the
bracket term.
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1.2.10 Input file examples

Viscous analysis for two-element case, specified angle of attack, vortex+doublets+source farfield, isen-
tropic except near shocks, free transition (this is the most common case):

3 4 5 7

3 4 5 7

0.30 0.5 2.20 | MACHIN CLIFIN ALFAIN

4 2 | ISMOM IFFBC

4.5E6 9.0 | REYNIN ACRIT

1.0 1.0 1.0 1.0 | XTRS XTRP ...

0.99 1.2 | MCRIT MUCON

Same as above, except isentropic condition used only near stagnation points. This doesn’t rely on
a shock finder, and hence is slightly more robust:

3 4 5 7

3 4 5 7

0.30 0.5 2.20 | MACHIN CLIFIN ALFAIN

3 2 | ISMOM IFFBC

4.5E6 9.0 | REYNIN ACRIT

1.0 1.0 1.0 1.0 | XTRS XTRP ...

0.99 1.2 | MCRIT MUCON

Viscous analysis for two-element case, specified angle of attack, solid-wall farfield, fully isentropic,
fixed transition on top side at 15% chord of element 1:

4 5 16

3 4 5

0.30 0.5 2.20 | MACHIN CLIFIN ALFAIN

2 1 | ISMOM IFFBC

4.5E6 9.0 | REYNIN ACRIT

0.15 1.0 1.0 1.0 | XTRS XTRP ...

0.99 1.0 | MCRIT MUCON

Inviscid analysis for single-element case, farfield doublets+source held at current values, specified
lift coefficient, isentropic only near leading edge, first-order dissipation:

3 4 5

3 4 6

0.70 0.5 2.20 | MACHIN CLIFIN ALFAIN

3 2 | ISMOM IFFBC

0.0E6 9.0 | REYNIN ACRIT

1.0 1.0 | XTRS XTRP

0.99 -1.0 | MCRIT MUCON

Inviscid analysis for single-element case, farfield doublets+source forced to zero, specified lift coef-
ficient, isentropic only near leading edge, first-order dissipation:
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3 4 5 7

3 4 6 8

0.70 0.5 2.20 | MACHIN CLIFIN ALFAIN

3 2 0. 0. 0. | ISMOM IFFBC [ DOUXIN DOUYIN SRCEIN ]

0.0E6 9.0 | REYNIN ACRIT

1.0 1.0 | XTRS XTRP

0.99 -1.0 | MCRIT MUCON

Viscous analysis for single-element case, with constant-lift Mach and Reynolds number variation
(M = 0.65/

√
CL , Re = 2.0e6/

√
CL):

3 4 5 7 15 10

3 4 5 7 16 18

0.65 0.8 2.20 | MACHIN CLIFIN ALFAIN

4 2 | ISMOM IFFBC

2.0E6 9.0 | REYNIN ACRIT

1.0 1.0 | XTRS XTRP

0.99 1.0 | MCRIT MUCON

Mixed-Inverse inviscid camber design driven with upper surface pressures, specified angle of attack:

3 4 5 7 11 12

3 4 5 7 11 12

0.70 0.55 2.20 | MACHIN CLIFIN ALFAIN

4 2 | ISMOM IFFBC

0.0E6 9.0 | REYNIN ACRIT

1.0 1.0 | XTRS XTRP

0.99 1.0 | MCRIT MUCON

0 1 | ISMOVE ISPRES

Modal inverse run with 12 shape mode DOFs and 2 position mode DOFs 2 position DOFs.

3 4 5 7 20 30

3 4 5 7 40 50

0.70 0.55 2.20 | MACHIN CLIFIN ALFAIN

4 2 | ISMOM IFFBC

2.0E6 9.0 | REYNIN ACRIT

1.0 1.0 | XTRS XTRP

0.99 1.0 | MCRIT MUCON

0 0 | ISMOVE ISPRES (not used here)

12 2 | NMODN NPOSN

Sensitivity run for viscous optimization using 12 mode DOFs and 2 position DOFs.

3 4 5 7 20 30

3 4 5 7 20 30

0.70 0.55 2.20 | MACHIN CLIFIN ALFAIN

4 2 | ISMOM IFFBC
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2.0E6 9.0 | REYNIN ACRIT

1.0 1.0 | XTRS XTRP

0.99 1.0 | MCRIT MUCON

0 0 | ISMOVE ISPRES (not used here)

12 2 | NMODN NPOSN

Flap position mode DOF 31 (assumingly a rotation mode), driven to attain specified CL = 1.5, at
fixed α = 2.2◦.

3 4 5 7 30

3 4 5 7 6

0.20 1.5 2.20 | MACHIN CLIFIN ALFAIN

4 2 | ISMOM IFFBC

1.0E6 9.0 | REYNIN ACRIT

1.0 1.0 | XTRS XTRP

0.99 1.0 | MCRIT MUCON

0 1 | NMODN NPOSN
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2 Programs

For repetitive program execution, as typically occurs in an airfoil design session, it is convenient to use
the simple shell script mrun. This is invoked with

% mrun xxx

which then produces a simple menu for executing any of the programs, editing input files, etc. Alter-
natively, the programs can be executed manually as described below.

2.1 AIRSET — airfoil geometry manipulator

AIRSET is a menu-driven program which can be used to manipulate multi-element airfoil configura-
tions, using a blade.xxx file or a bunch of separate element files as the input. Starting AIRSET with
an argument:

% airset xxx

will cause blade.xxx to be automatically loaded. It can also be loaded from the menu if the argument
is not specified.

AIRSET permits actions such as splitting off a flap element and modifying the contour with the
screen cursor. Likewise, element translation, rotation, scaling, etc., can be readily performed with
immediate graphical feedback. Corner points can also be added or deleted. An inviscid panel method
with a compressibility correction is also provided for a quick sanity check on any modification. Refer
to the AIRSET User Guide manual for more details.

2.2 MSET — grid and flowfield initializer

MSET is the program which initializes the grid, the flowfield, and a variety of other variables. It is
executed with the command

% mset xxx yyy

with the second argument yyy optional. MSET reads the airfoil coordinate input file from blade.yyy,
or blade.xxx if the yyy argument is omitted. The intent of the two arguments xxx and yyy is to
allow one blade.yyy coordinate file to be used for many xxx flow cases without the need to create a
blade.xxx file for each case. The output in any case is the main solution state file mdat.xxx.

New for MSES 3.04: If blade.xxx or blade.yyy does not exist, then MSET tries to read file yyy
(i.e. without the blade. prefix). This allows using the common .dat airfoil file to set up a case. For
example,

% mset n12 naca0012.dat

will create the state file mdat.n12, using the airfoil coordinates in file naca0012.dat.

MSET also tries to read the gridding parameter save file gridpar.xxx (to be described shortly).

MSET is menu-driven to allow the user to iteratively generate a good initial grid by tweaking a
small number of gridding parameters. The top level MSET menu is
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1 Specify alpha and generate streamlines

2 Generate spacing and initialize grid

3 Elliptic grid smoother

4 Write mdat.xxx

5 Plot grid

6 Plot Cp vs x/c

7 Modify grid parameters

8 Write grid parameters to gridpar.xxx

9 Change plot size

11 Zoom

12 Unzoom

13 Write blade.xxx

14 Write mses.xxx with defaults

The generate the initial grid and write out the solution file, Options 1, 2, 3, 4 (in that order), must
be issued as a minimum. The only exception is that Option 1 can be skipped if the angle of attack has
been previously defined and written to the gridpar.xxx file, described shortly.

New for MSES 3.04: Options 13 and 14 conviently allow setting up an MSES run case using only
a common .dat airfoil file, given as the 2nd Unix argument. For example,

% mset n12 naca0012.dat

1

2

3

4

13

14

will generate not only file mdat.n12, but also blade.n12 and mses.n12.

2.2.1 Panel solution

Option 1 uses the specified angle of attack to generate a panel solution, which is then used to trace
a pair of stagnation streamlines just above and below each element, as well as the upper and lower
farfield streamlines. Iso-potentials emanating from all leading and trailing edges are also located. This
divides up the domain into blocks, which are then automatically displayed in a plot. These blocks form
the skeleton on which the grid is generated. The specified angle of attack here is of course somewhat
arbitrary, since it is only used for initial grid generation. It is a good idea, however, to specify an
angle of attack which avoids massive Cp spikes on any of the elements. This minimizes the start-up
trauma with a subsequent viscous MSES solution. After Option 1 is issued, the Cp distributions can
be immediately displayed with Option 6.
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2.2.2 Initial surface gridding

Option 2 distributes grid nodes along the streamlines on the element surfaces (the total number of nodes
on each surface may need to be changed first with option 7 described below). The local arc-length
increment ∆s between two surface grid nodes is determined from

∆s ∼ 1

1 + a|κ|b

where κ is the local surface curvature. In regions of high curvature, the spacing is therefore smaller,
depending on the curvature exponent b and the coefficient a. The exponent is specified directly from
the menu described below. A large exponent (b = 2, say), makes the spacing small in high-curvature
regions. A small exponent (b = 0.05, say), makes the spacing more nearly uniform everywhere. The
curvature coefficient a is indirectly controlled by specifying ∆s spacing at the leading edge (or stagnation
point, to be more precise) of the element. Note that if κ is rather small at the stagnation point, the
effect of a is largely shut off in the expression above. If necessary, a fudged additional curvature is
added locally very near the stagnation point to allow the spacing requirement to be met. A message
is printed when this action is taken. Fudged curvatures are also introduced near the trailing edge,
and optionally at selected local-refinement zones on the upper and lower surfaces. The aim is also to
control the local spacing.

For MSES v 2.9, rather than the actual local surface spacings ∆s, the local/average spacing ratios
∆s/∆savg are specified instead. The average spacing is defined as ∆savg = sside/N , where sside is 1/2 of
the airfoil perimeter and N is the number of airfoil-side points. Specifying the ratio is more convenient
than specifying ∆s itself, since the former automatically adjusts the spacing if the number of points is
changed.

The curvature exponent, and stagnation-point and trailing-edge spacing ratios and local-refinement
parameters are altered from the following menu, which appears each time the spacing is generated and
plotted.

D sLE/dsAvg, dsTE/dsAvg spacing ratios

C urvature exponent

U pper side spacing refinement

L ower side spacing refinement

Change what? (<Return> if spacing OK):

For each change request, the current values are displayed after the prompt. Selecting “U”, for example,
might produce

Enter new upper s/smax limits, local/max density ratio 0.0100 0.0500 0.800

and just hitting <Return> will take the current values as the default input. One can change only some
of the required three inputs by using commas. Entering

0.02

will only change the first value from 0.01 to 0.02, while entering

,,0.5
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will only change the third value from 0.8 to 0.5. The first two “s/smax” values specify the fractional
arc length from stagnation point to the trailing edge where the local refinement is to be placed. Tick
marks inside the airfoil element contour indicate this fractional arc length in increments of 0.10. The
local/max density ratio specifies the increase in local grid density over the max density which would
occur in absence of the local refinement.

After the spacing parameters are altered, the new distribution is generated and displayed. The
actual LE, TE, max, min, spacing ratios are also printed out. It must be mentioned that only the
stagnation point spacing ratio “dsLE/dsAvg” can be controlled precisely with the input parameters.
The other spacing ratios are approximate and may need to be iterated.

Once a good node distribution on each element is obtained, MSET proceeds to modify all the
spacings to resolve any conflicts between adjacent elements. Basically, all the distributions are auto-
matically fudged to make spacings on element surfaces facing each other match as closely as possible.
This prevents massive grid shearing which would otherwise occur. No such action is necessary for
single-element airfoils.

Once all the node distributions are finalized, intermediate streamline nodes are generated in the
flowfield interior by simple linear interpolation from the stagnation and farfield streamlines. The
resulting grid is not yet suitable for MSES calculations, but can be viewed with Option 5.

2.2.3 Grid smoothing

Option 3 invokes an elliptic SLOR grid smoother to “clean up” the linearly interpolated grid. This
eliminates all kinks, overlaps, and also makes all the grid streamlines correspond to streamlines of
incompressible inviscid flow. This is then an excellent initial guess for the MSES solver.

2.2.4 Initial solution file output

After the grid is smoothed, Option 4 can be issued to write out the initial solution file mdat.xxx which
is then ready for the MSES solver. Before this is done, however, it is a good idea to view the grid with
Option 5. Options 2,3 or 1,2,3 can then be repeated if necessary to obtain an acceptable grid before it
is written out.

2.2.5 Grid parameters

Option 7 puts up the menu

Current grid parameters:

N 141 Airfoil side points (for chord = 1) E

E 0.400 Exponent for airfoil side points: n = N*chord

I 35 Inlet points on leftmost airfoil streamline

O 35 Outlet points on rightmost airfoil streamline

T 19 Number of streamlines in top of domain

B 15 Number of streamlines in bottom of domain

M 7 Maximum streamlines between two elements

X 0.850 X-spacing parameter

A 2.500 Aspect ratio of each cell at stagnation point
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4.000 Angle of attack

Change what (<cr> if done) ?

in which each gridding parameter is displayed and can be immediately altered (the angle of attack
is altered with Option 1 at the main menu). The number of surface grid nodes allocated to each
element is controlled with the two parameters labelled “N” and “E”. Note that when E = 1.0, the
number of grid points on each element is proportional to its chord, while if E = 0.0, all elements receive
the same number of grid points. The X-spacing parameter “X” controls how much the quasi-normal
grid lines spread out away from the airfoil. A larger value (0.8 . . . 1.0) tends to make the grid more
orthogonal (which is good), but may cause excessive bunching of the quasi-normal grid lines in high-lift
cases (which is bad). Transonic flows are best run with a nearly-orthogonal grid, since grid shearing
increases the amount of dissipation needed for stability.

The action of the remaining parameters is straightforward. It must be kept in mind that the point
number parameters are only approximate, since MSET takes liberties in fudging point numbers to
keep the grid shearing under control. Typically, they need to be iteratively adjusted.

If grid coarsening (described later) is to be performed, all the integer grid parameters above must
be odd. Future MSES versions will probably automatically ensure this.

2.2.6 Grid parameter saving, recall

Once a good set of gridding parameters is obtained, including the spacing parameters generated with
Option 2, they can all be saved to gridpar.xxx by specifying Option 8 at any time. If this file already
exists, it is overwritten. gridpar.xxx will then be automatically read when MSET is executed again
for that same xxx case, which causes all the gridding parameters to take on their saved values. This
allows rapid generation of grids for cases which differ only slightly (e.g. flap deflection or angle of
attack), since the same gridding parameters can then be used.

If gridpar.xxx has the angle of attack defined (α = 999.0 implies it is not defined), then this will
be used to generate a panel solution as soon as MSET is started. Option 1 in the main menu can
then be skipped.

2.3 MSES — flow solver

MSES is the main program that solves the Euler equations. It has two input files, mdat.xxx and
mses.xxx, and then writes the output file back to mdat.xxx. Thus the input file mdat.xxx can either
be a restart file from an old calculation, or a brand-new file created by MSET .

2.3.1 Execution

MSES is run by typing

% mses xxx n

with “n” (optional) being the maximum number of Newton iterations to be executed. If “n” is omitted,
the user is asked for the number of iterations to be executed. If the user enters “n” then the program
response is
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0 writes solution to output file and terminates
n performs n iterations and repeats the question

2.3.2 Coarsening/refining

MSES 2.95 has the capability to coarsen or refine the grid to possibly allow speeding up the conver-
gence process. This feature is still experimental, and is currently entirely user-driven. It may become
automated in future MSES versions.

Coarsening or refining is commanded by specifying “−” or “+” at the iteration-number prompt:

− coarsens the grid, repeats question
+ refines the grid, repeats question

One can also specify the ± sign together with the number of iterations. Note that in this case, entering
+n is not the same as just n.

Coarsening is done by deleting every other grid point, so that the grid dimensions are halved. This
reduces the CPU time per iteration by nearly a factor of 8, and also doubles the distance that a shock
is propagated every iteration. Needless to say, coarsening is an extremely efficient way to obtain a
reasonable flowfield solution estimate, especially for transonic cases. Subsequent refining interpolates
the coarse solution back onto a fine grid, created by doubling the points in both directions. This is then
an excellent starting point for reconvergence on the fine grid, which will now converge fairly quickly.
Instead of just requesting n = 15 on the fine grid, one could request n = −10 and then n = +5, which
will attain the solution in less than half the time. The same effect can also be achieved by running
MSES in batch mode twice:

% mses xxx -10

% mses xxx +5

A flow case can be coarsened two or more times, but this is rarely advantageous.

Currently, coarsening is possible only if the number of grid lines over each grid segment is odd. The
default gridding parameters in MSET for a single-element airfoil will always produce a grid which
can be coarsened. The gridding logic for multi-element airfoils is relatively complicated, and currently
MSET cannot guarantee that any particular multi-element grid can be coarsened. However, a grid can
always be refined, provided the array dimensions are sufficiently large. Hence, a reasonable approach
is to generate a coarse grid which is roughly half as dense as usual in each direction. After this is
converged, it can be refined for the final solution.

2.3.3 Iteration convergence

After each iteration, MSES prints out a small table of numbers. These represent how much various
parameters have changed (r.m.s. and maximum) during this iteration. The parameters are:

d(R) density change
d(n) grid node displacement (the grid position is part of the solution)
d(Gamma) circulation (approx. CL/2)
d(Alpha) angle of attack
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d(V) all of the viscous variables, which are:
d(C) max. Reynolds stress stress coefficient
d(N) transition amplification factor
d(T) momentum thickness
d(D) displacement thickness
d(H) shape parameter

Also displayed is the change in viscous CD if a viscous case is being run. Convergence to plotting
accuracy occurs when the changes drop to about 0.1×10−3 or so. If no separation is present, convergence
to machine accuracy is achieved when the changes refuse to go down further with each iteration (about
0.1×10−5). If significant separation is present, the final change magnitudes will be somewhat larger —
about 0.1× 10−4 or even 0.1× 10−3. This is due to the Newton matrix for such cases being relatively
poorly-conditioned, which magnifies machine roundoff. Poor conditioning will also result from very low
Mach numbers. It is recommended that a Mach number of at least 0.05 be used, and 0.10 is preferable
if extensive separation is present or the case is near CLmax, since this compounds the poor-conditioning
problems. If this is a problem, MSES can be built in double precision by simply setting the appropriate
flag in the Makefile (likewise for the plot library). The subcritical version MSIS , described later,
does not have this machine roundoff problem, and can tolerate very small Mach numbers even in single
precision.

The number of iterations specified in the command line or interactively is actually only a limit.
MSES will terminate early if the r.m.s. changes drop below the convergence tolerance limits defined
in file EPS.INC, and the maximum changes drop below 10× these limits.

2.4 MSIS — fast subcritical flow solver

Using MSIS instead of MSES is functionally equivalent to using MSES with ISMOM=2. It solves
the Euler equations with the S-momentum equation replaced by an isentropic condition everywhere.
The equation actually used is

R2 ≡ S̃ = 0

This is a pointwise equation. When it is effectively eliminated from the system, the Newton matrix
then has about half as many non-zero entries as with MSES , so MSIS is 2–4 times as fast. The input
file mses.xxx is exactly the same as described above, except that ISMOM, MCRIT, and MUCON are
not used. Also, MSES and MSIS can be run interchangeably with the same mdat.xxx file.

MSIS has another advantage in that it can calculate flows for extremely small freestream Mach
numbers—M

∞
≃ 0.001 or less (this feature is new for MSES v 2.9). The manner in whichMSIS calculates

the pressure from the streamtube area, mass flow and total enthalpy is not sensitive to machine round-
off. MSES does have this sensitivity, and refuses to converge properly if M

∞
< 0.10 for viscous cases

with separation, or if M
∞

< 0.02 for inviscid cases.

The MSIS executable image is formed by replacing setup.o with setis.o, and fsolve.o with
isolve.o during linking. The isentropic version of the polar driver is called MPOLIS , and it is
likewise linked with setis.o and isolve.o . Like MSIS , MPOLIS can calculate flows at very low
Mach numbers.

Important: MSIS and MPOLIS can only be used (and are recommended) for subcritical cases.
If any part of the flowfield in the converged solution or a transient becomes supersonic, MSIS or
MPOLIS will fail. MSIS and MPOLIS also tend to have more start-up trauma for moderate-Mach
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cases (converged maximum local M = 0.8, say), with the initial local Mach tending to overshoot. An
effective fix is to first perform one or two iterations with MSES , and then proceed with MSIS for all
subsequent calculations.

2.5 MPOLAR — parameter-sweep calculation driver

MPOLAR is a version of MSES which conveniently sweeps through a range of a specified parameter,
thus generating a polar curve. Because it takes full advantage of the quadratic convergence of the
Newton method, using MPOLAR is much more efficient (and much easier!) than running a sequence
of independent cases from scratch with MSES or MSIS .

Note that previous MSES versions had separate polar programs for alpha, CL, and Mach sweeps.
These have been combined into the one current MPOLAR program.

In addition to the usual MSES input files, MPOLAR also requires an spec.xxx file, which con-
tains the sequence of parameters, with an optional state file dump flag for each angle:

KSPEC

SPECIN(1) [ KSENS(1) ]

SPECIN(2) [ KSENS(2) ]

.

.

.

SPECIN(NA) [ KSENS(NA) ]

The first line indicates the index of the constraint whose parameter values are given in the subsequent
lines. This constrain must also appear in the second line of the mses.xxx file. Currently allowed values
for KSPEC, and corresponding SPECIN interpretations are

KSPEC SPECIN

----- ------

5 ALFAIN

6 CLIFIN

15 MACHIN

16 MACHIN interpreted as MACH*sqrt(CL)

17 REYNIN

18 REYNIN interpreted as REYN*sqrt(CL)

If the optional KSENS number on any line is nonzero, then a mdat.xxx n file, with n = KSENS, will
be written for that point after convergence as described later.

For any type of polar, it is best to make the parameter increment sufficiently small to give reliable
reconvergence for each point. If KSPEC = 5, it is appropriate to make the α increment no larger than
0.5◦. For strong transonic cases which typically have large dCL/dα values, an increment of 0.25◦ or
even 0.1◦ may be appropriate. Although larger increments will result in less points to be computed,
the number of iterations per point will increase such that little or no overall saving will result. Using
small increments also gives a more robust sweep in nasty regions such as past CLmax . If the first point
in the polar is a difficult case, it is suggested that that point be partially converged with MSES , so
that the subsequent MPOLAR execution will not exceed its iteration limit. MPOLAR is executed
by the command

27



% mpolar xxx

and will perform all calculations without requiring further user input.

Coarsening/refining is currently not available with any of the polar driving programs. This may
change in the future after some experience with these options is gained.

Everytime MPOLAR converges on a point to the tolerances in EPS.INC, it appends the integrated
parameters to polar.xxx, appends the surface pressure and boundary layer variable distributions to
polarx.xxx, and overwrites mdat.xxx with the converged solution. If KSENS for that point is nonzero
and modal-geometry or element-position DOFs are active, then the sensitivity dump file sensx.xxx n

is also written out, with n = KSENS. The sensx.xxx n files are used as input to the optimization
driver program LINDOP .

If MPOLAR fails to converge on any one point, it will restart from the previously-converged
point, and subdivide the offending SPEC increment. If that point fails, the SPEC increment will be
subdivided further. If no convergence is achieved after five subdivisions, MPOLAR will terminate
with a “Severe convergence problem detected” message. Failure to converge on any one point may
be due to massive separation, or a very dramatic jump in a transition location. Occasionally, a limit
cycle occurs, with a transition location oscillating back and forth. This is often caused by inadequate
resolution near the transition point. Simply restarting MPOLAR may fix the problem, since such a
restart will begin after the offending point if the preceding interval was subdivided previously.

If after MPOLAR execution it is found that the polar is not complete, points can be added to
the spec.xxx file, and MPOLAR restarted. The new points will be automatically appended to the
save and dump files. The sensx.xxx n file counter n will also be properly restarted.

The results in polar.xxx can be perused directly, or plotted in pretty format using programs
PPLOT or SPLOT . The results in polarx.xxx can only be viewed via the plotting program MX-
PLOT .

With PPLOT , one can also plot two or more polars superimposed, and a file with comparison
data can also be specified. The format of this file is as follows.

CD(1) CL(1)

CD(2) CL(2)

. .

. .

999.0 999.0

alpha(1) CL(1)

alpha(2) CL(2)

. .

. .

999.0 999.0

alpha(1) Cm(1)

alpha(2) Cm(2)

. .

. .

999.0 999.0

Xtr/c(1) CL(1)

Xtr/c(2) CL(2)

. .
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. .

999.0 999.0

The number of points in each set (CD-CL, alpha-CL, etc.) is arbitrary, and can be zero. PPLOT is
simply run from the terminal and prompts the user for the full input polar filenames and reference data
filenames. The polar filenames do not need to have the “.xxx” name convention. PPLOT also tries
to read the file pplot.def, which contains various plotting parameters. If pplot.def is not found,
internal hard-wired defaults are used.

The program MXPLOT which plots the polar dump file is executed using

% mxplot <dump filename>

As with PPLOT , the usual “.xxx” name convention is not used here since more flexibility in naming
the polar save and dump files is usually needed. MXPLOT is entirely menu-driven and requires no
further explanation here.

MPOLAR requires that DALFA (4) be chosen as one of the global variables, and that the
prescribed-α condition (5) be one of the global constraints. The input value ALFAIN in mses.xxx

is ignored.

2.6 MPOLIS — fast subcritical parameter-sweep calculation driver

MPOLIS is the same asMPOLAR , except it’s the equivalent of runningMSIS rather thanMSES over
a parameter range. It uses the same spec.xxx parameter file.

2.7 MPLOT — solution plotter

MPLOT is the program which displays the solution in mdat.xxx at any time whether the solution is
converged or not. It is executed by the command

% mplot xxx

Note that if the solution in mdat.xxx is not converged, the results are physically meaningless. MPLOT has
five major plotting options, selected from the top-level menu:

1 Airfoil surface plots

2 Streamtube plots

3 Contour/grid plots

4 Outer streamline plots

5 Wake profile plots

6 Zoom

7 Unzoom

8 Plotting options

9 Re-read mdat.xxx

10 Dump streamline grid

11 Dump flowfield

12 Dump BLs
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Each command is largely self-explanatory. The “Outer streamline plots” option 4 is mainly intended
to examine tunnel-wall pressures in solid-wall cases, although it can be used for any flow case. Outer-
streamline velocities or pressures can be output from a converged mdat.xxx file by using the simple
separate program UEWALL (see header in uewall.f).

2.7.1 BL variable plots

The “Surface plots” menu brought up by the top-level option 1 allows plotting of most of the airfoil
surface and wake boundary layer variables:

1 Mach vs x

2 Cp vs x

____________________

3 H vs x

4 top D,T vs x BL data

5 bot D,T vs x on

6 Cf vs x airfoil

7 Ue vs x and

8 A/Ao vs x wake

9 Ct vs x

10 Rtheta vs x

11 CDiss vs x

____________________

12 List CL, CD ...

13 Change settings

14 Hardcopy current plot

15 Place symbol at specified grid location

16 Change x-axis limits for element BL plots

17 Change y-axis limits for current element BL plot

18 Cursor blowup for current BL plot

19 Reset x,y-axis limits for element BL plots

20 Annotation menu

21 Plotting options

22 Specify/Change element for plotting

99 Re-load mdat.xxx and replot

The Mach and Cp menu items (1 and 2), can display the distributions on one element, or all of them
simultaneously. The Cp plot item 2 displays the extrapolated wall pressure pw (described earlier). The
“BL data” menu items (3 . . . 11) display quantities for at most one element at a time. Items 3, 6 . . . 11
show one variable on both sides of the element, while items 4,5 show δ∗ and θ together for one side
only. Items 4,5 also show the total (top + bottom) thicknesses for the wake as dotted lines, and also
the inviscid-grid wall-offset distance ∆n as a dashed line. Normally, ∆n = δ∗, and the two curves will
overlay, but only if the case is fully converged. If the dashed ∆n curve can be discerned, the case is not
converged. Item 7 shows both the viscous edge velocity ue as a solid line, and also the local inviscid
velocity ui defined at the displacement surface. There may be a visible difference between ue and ui if
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the case is not converged. Items 16,17,18,19 allow rescaling of the BL variable plot axes to zoom in on
details of interest.

2.7.2 Force coefficients

The various forces and moments are computed in a number of ways. The x and y pressure and friction
forces and the moment are computed for each element by direct integration over the surface.

Cxp =
2

ρ
∞
V 2

∞

∮

−p dy

Cyp =
2

ρ
∞
V 2

∞

∮

p dx

Cxf
=

2

ρ
∞
V 2

∞

∮

τw dx

Cyf =
2

ρ
∞
V 2

∞

∮

τw dy

Cm =
2

ρ
∞
V 2

∞

∮

{−p [(x− xo) dx+ (y − yo)dy] + τw [(x− xo) dy − (y − yo)dx]}

The total lift and moment, and the friction drag are then determined by summing over the elements,
and projecting the lift and friction drag along the freestream axes.

CL =
∑

[

(Cxp + Cxf
) cosα − (Cxp + Cxf

) sinα
]

CDf
=

∑

[

Cxf
cosα + Cyf sinα

]

CM =
∑

Cm

The pressure drag is not computed via the surface pressures, since this tends to be rather inaccurate.

The total drag is computed by performing the equivalent of a wake survey over the exit plane of
the grid. The last computational point of each element’s wake contains the wake exit quantities

ρeexit ueexit peexit θexit δ∗exit

This station is nearly at the freestream pressure, peexit ≃ p
∞
, but for maximum accuracy, especially on

small grids, it is extrapolated to the exact p
∞

condition using the von Karman equation for a wake.

d
(

ρeu
2
eθ
)

= δ∗ dp

d ln ρeu
2
eθ =

H

γM2
e

d ln p

(ρV 2θ)
∞

= ρeexitu
2
eexit

θexit

(

p
∞

peexit

)Havg/γM2
∞

where Havg =
1

2
(Hexit + H

∞
)

and H
∞

= 1 + (γ − 1)M2
∞

The extrapolated momentum defects are then summed over the elements to get the total viscous drag.

CDv =
2

ρ
∞
V 2

∞

∑

(ρV 2θ)
∞
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The wave drag is determined by computing the momentum defect of all the streamtubes in the
inviscid part of the flow. This requires sampling the exit plane inviscid velocity and pressure

qexit pexit

and isentropically extrapolating this velocity to freestream pressure to get q+∞
.

pexit

(

1− q2exit
2h0∞

)

−γ/(γ−1)

= p
∞

(

1− q2+∞

2h0∞

)

−γ/(γ−1)

q+∞
=

{

2h0∞

[

1−
(

p
∞

pexit

)(γ−1)/γ
(

1− q2exit
2h0∞

)]}1/2

The wave drag is then computed by integrating over all the streamtubes, each with mass flow dm.

CDw =
2

ρ
∞
V 2

∞

∫

(V
∞
− q+∞

) dṁ

Unlike for all the other force components, this drag cannot be assigned to the individual elements.

The total drag coefficient is finally obtained by adding the viscous and inviscid momentum defects

CD = CDv + CDw

and finally the pressure-drag component is indirectly obtained by subtracting off the friction drag.

CDp = CD − CDf

Note that all the force coefficients are normalized with the freestream dynamic pressure ρ
∞
V 2

∞
/2.

The absence of the usual chord normalization means that they are instead normalized by the same
length unit L as used for the input airfoil coordinates. Hence, they will be the usual CL, CD, etc. only
if the airfoil coordinates in blade.xxx have a unit chord. Boundary layer thicknesses such as δ∗ and θ
are also displayed without normalization, so in effect they are in this same length unit L.

The skin friction coefficient Cf (item 6) and dissipation coefficient CD (item 11) are currently
normalized with the freestream quantities:

Cf =
2 τw
ρ
∞
V 2

∞

CD =
D

ρ
∞
V 3

∞

=
1

ρ
∞
V 3

∞

∫ ye

0
τ
∂u

∂y
dy

The alternative normalization is with the boundary layer edge quantities, e.g.:

Cf =
2 τw
ρeu2e

CD =
D

ρeu3e

which are standard in boundary layer theory, but are inconvenient for plotting since Cf and CD are
then strongly singular at a stagnation point. The latter definitions are currently commented out in
SUBR. INIT in mplot.f, and can be easily activated if needed.
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2.7.3 Individual TS wave amplitude plots

MSES uses the “envelope method” for transition prediction, which is a simplified version of the en

method. Instead of tracking the Tollmien-Schlichting (TS) wave amplitudes for many individual fre-
quencies (as in the en method), the envelope method determines for each surface point the amplitude
of whatever frequency happens to be most amplified at that point. This is a great simplification,
but involves some approximations which have the greatest impact in flows where the shape parameter
varies rapidly. To permit checking of the validity of the results of the envelope method, the A/Ao vs x

(item 8) in the surface plots menu displays the amplitude of both the envelope as well as the individual
frequencies which would have been predicted by the en method. Ideally, the envelope curve just touches
the largest of all the individual frequency curves at each location. Any deviation from this ideal usually
lies within the uncertainty in the specified critical amplification factor “n”.

Activation of the TS wave amplitude plotting requires the appropriate definition of the OSOBJ
variable in the Makefile. The disadvantage of this feature is that the necessary storage of the Orr-
Sommerfeld database (read in once from oshai.dat) makes the MPLOT executable image quite
large.

2.7.4 Graphics library

The graphics library employed by all plotting programs is Xplot11 (libPlt.a), which is aimed at
driving X-terminals. It also allows a PostScript file plot.ps to be generated from the current visible
screen plot at any time. Both color and black&white output is supported. More information on this
plot library is in the ../plotlib/Doc description file.

The screen graphics window initially is sized to cover roughly 70% of the screen. This is controlled
by the variable SCRNFR which is hardwired to a default value of 0.7 in all the plotting programs, and
can be changed if desired. It can also be made negative to put the default window in Portrait form,
although most of the plotting programs are tailored for the Landscape format.

The X11 window normally has a reverse (black) background. Standard-video, with a white back-
ground, can be selected or unselected by setting the Unix shell variable as follows.

% setenv XPLOT11_BACKGROUND white

% unsetenv XPLOT11_BACKGROUND

This can also be done with a menu selection in the shell script mrun. Reverse-video has no effect
on screen colors. It also has no effect on PostScript output at all, which is always black-on-white or
color-on-white.

2.8 MEDP — specified-pressure editor

MEDP is an interactive menu-driven program used to modify data in mdat.xxx. MSES /MEDP is
really an airfoil redesign system rather than a pure design system, and it requires that mdat.xxx contain
a previously-converged case.

2.8.1 Data modification

When MEDP is executed with
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% medp xxx

it first tries to read mdat.xxx, and then displays its top level menu:

1 Edit Cp distributions

2 Re-read mdat.xxx

3 Write mdat.xxx

4 Write airfoil coordinate file

5 List flow conditions and forces

6 Change MSES flow parameters

7 Plot size change

8 Write CPwall file

9 Read CPspec file

10 Write Mwall file

11 Read Mspec file

12 Read new airfoil coordinate file

The purpose of most of these options is to insert and extract data from the solution. Option 6, for
example, allows the modification of certain parameters not normally accessible through the usual input
file mses.xxx.

The primary purpose of MEDP , however, is to insert specified pressure (or Mach) distributions
into mdat.xxx for inverse calculations. Options 8,10 can be used to write out the current distributions.
These can then be edited and read back in with Options 9,11, and subsequently saved to mdat.xxx

with Option 3.

The much more user-friendly way to modify the Cp distributions is via Option 1, which puts the
user into another menu:

I nitialize CPspec <== CPwall for target element

M odify Cp

S lope-matching at input-Cp endpoints (toggle)

D emark inverse segment

P lot Cp vs s/smax

G rid-plotting toggle

V ector Cp plot

B lowup

R eset to original size

H ardcopy current plot

N ew target element

which is used to perform the specified-Cp modifications interactively via the cursor as described below.
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2.8.2 Specified-Cp editing

The specified pressure array CPspec read in from mdat.xxx is originally zeroed out in MSET , so if
this is a first inverse editing session, the user must select option I to initialize CPspec to the current
wall pressure coefficient arrays CPwall. Option M will then allow the user to “edit” CPspec to his
liking with the screen cursor. This can be done repeatedly if needed. At the completion of each M

command, the cursor-specified Cp points are splined, and the piece is grafted into the existing CPspec

distribution. The splined piece can have natural spline endpoints, or values and slopes which match
the current CPspec. The latter case is the default, and can be toggled with the S command.

If a Mixed-Inverse case is to be run with MSES , then inverse target segment endpoints will need
to be specified with option D. In the default (unmarked) case, the target segment endpoints are just
downstream of the front stagnation point, and at the rear trailing edge point. For cases with fairly
blunt leading edges, the left segment endpoint should not be placed too close to the stagnation point.
At near-stagnation pressures, the surface deformation is very sensitive to small pressure changes. If
a pressure slightly above stagnation is specified, then the calculation will fail, since then there is no
possible solution. With successive Newton iterations, the surface will severely indent and then tangle
hopelessly. In essence, modifying the geometry near a stagnation point via the surface pressure is
ill-conditioned and should be avoided.

If a Modal-Inverse or optimization case is to be run, then the geometry modes and their endpoints
must be specified in file modes.xxx (described in the Optimization section below).

If a screen cursor is not available, then top-level option 8 (or 10) can be used to dump the surface
Cp’s (or equivalent Mach numbers) into a formatted scratch file, which can then be edited manually, or
preferably with the user’s own software. This file can then be read back into MEDP with Option 9 or
11. The scratch file also contains the indices of the target element and the requested inverse segment
endpoints. However the CPspec distribution is generated in MEDP , it must be written out with
the mdat.xxx file so that MSES or MSIS can access the information. This is done with top-level
Option 3.

It must be mentioned here that in MSES v 2.9 all inverse calculation operations are performed using
the pressure pi defined at the displacement streamline, which is what was done in all previous MSES
versions. Hence, CPwall actually represents pi and not pw, and in viscous inverse cases one should not
be surprised if CPwall for the two airfoil sides does not match up at the trailing edge, since the Kutta
condition is imposed on pw and not pi.

3 Inverse Calculations

MSES or MSIS are configured for an inverse case by selection of the appropriate global variables
and constraints. How the specified pressures are used, and how the airfoil is to be modified in the
MSES inverse calculation, are selected via the variables ISMOVE and ISPRES in mses.xxx. The
Mixed-Inverse option requires that the global variables (11) and (12) and the global constraints (11)
and (12) be chosen in addition to the usual analysis-case variables and constraints. If desired, variables
(13) and/or (14) can also be specified, with corresponding constraints (13),(14). The global variables
(11). . . (14) are coefficients A1. . .A4 which multiply intentional“error” terms added to the specified wall
pressure pspec. These error terms are necessary since it is not possible to specify an arbitrary pressure
distribution and obtain a closed airfoil (Lighthill’s theory). The final surface pressure after an inverse
calculation is

pi(s) = pspec(s) + A1f1(s) + A2f2(s) + A3f3(s) + A4f4(s)
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where fn(s) are prescribed shape functions defined in SUBROUTINE INIT. The new degrees of freedom
A1 and A2 allow the imposition of geometric closure constraints at each of the two inverse-segment
endpoints:

∆n = 0

The optional degrees of freedom A3 and A4 allow imposition of pressure curvature at the two segment
endpoints:

d2pi
ds2

=
d2pspec
ds2

The latter produces a smoother geometry at the inverse segment endpoint(s), but results in a greater
difference between CPspec and the final converged Cp. This can be useful in some cases, but is rarely
required. The error terms added to Pspec will be minimized if modifications to CPspec are done so that
the lift is approximately preserved.

3.1 Fixed α versus CL

It is suggested that a fixed angle of attack (constraint (5)) be used with Mixed-Inverse cases when
the inverse segment covers all or mostly all of an airfoil side. Since α and one of the added pressure
DOFs have nearly the same effect on the surface Cp, leaving them both as free variables makes for a
poorly-conditioned problem.

3.2 Separation in inverse cases

One important point to remember when performing viscous Mixed-Inverse cases is that there must not
be any separation present within the target segment. Such a calculation is equivalent to imposing a
pressure (or ue) distribution on a separated boundary layer, which is physically ill-posed. The result
will be an inability of the code to converge properly, and will likely produce a very irregular airfoil
geometry in the separated region. A reasonably good solution to this problem is to temporarily set the
Reynolds number REYNIN in mses.xxx to zero when converging the Mixed-Inverse case. This “freezes”
the boundary layer displacement thickness and sidesteps the physical ill-posedness problem. After the
inverse problem converges, the Reynolds number can be restored and the case immediately reconverged
as a regular analysis case (this will retain the new modified airfoil geometry). This technique has been
found to be very satisfactory in practice.

3.3 Modal-Inverse

The Modal-Inverse method restricts changes in the airfoil to be a sum of some specified set of geometry
modes. If the modes are smooth, then the modified airfoil is guaranteed to be smooth as well. Modal-
Inverse is quite robust, and is particularly useful in flows with shocks and/or separation, where the
Mixed-Inverse method might produce and irregular airfoil shape or simply fail due to ill-posedness.
On the other hand, Modal-Inverse will match CPwall to CPspec in only a least-squares sense, and is
intended for changing the overall airfoil shape, rather than removing small geometric defects.

The Modal-Inverse option requires that any combination of the global variables (21-29) be chosen.
For each global variable, its corresponding global constraint (41-49) must be specified. One can also
use the “shortcut” variable (20) and constraint (40) in conjunction with a specified NMODN. The
geometry mode shapes are set up in FUNCTION GFUN (in gmodes.f), and can be altered as desired.
See the Optimization section below for further info on the mode shapes.
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It must also be mentioned that the Modal-Inverse option does not allow a full linearization of all
the governing equations, with the result that the convergence rate will be somewhat more sluggish than
usual. Nevertheless, only a few more iterations relative to a usual analysis or Mixed-Inverse case will
be required. On the other hand, a viscous Modal-Inverse case can typically handle limited separated
regions within the target segment. Is is not necessary to temporarily “freeze” the boundary layers as
with Mixed-Inverse.

3.4 Inverse-case convergence tolerance

It is rarely necessary to converge a Mixed-Inverse or a Modal-Inverse case down to the usual convergence
tolerance used for analysis cases. If the iterations are halted before full convergence is reached, then
the new airfoil shape is still quite usable — it might have been changed 95% of the way towards the
“correct” geometry rather than the 99.999% obtainable with full convergence. This slight difference is
irrelevant in actual iterative design applications, since the “correct” geometry rarely turns out to be
exactly what is required.

3.5 Inverse Design Session

Below is a sample inverse design calculation sequence, starting from the seed case xxx. Program
executions as well as option selections within MEDP are shown.

% mset xxx

% mses xxx (usual analysis run)
% medp xxx

1 Edit Cp distributions
I nitialize CPspec
M odify Cp
B lowup (optional)
M odify Cp (repeat as needed)
.
.
D emark inverse segment
return

3 Write mdat.xxx
0 Quit

% edit mses.xxx (add 11,12 to input lines 1 and 2)
% mses xxx (inverse run)
% mplot xxx (optional)
% medp xxx

1 Edit Cp distributions
I nitialize CPspec (optional)
M odify Cp
.
.
return

3 Write mdat.xxx
0 Quit
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Figure 4: Poor and effective Cp modifications to remove spike (dashed line).

% mses xxx (inverse run)
% medp xxx

4 Write airfoil coordinate file (if satisfied with design)

The sequence above can be repeated as often as needed. The Cp plot in MEDP displays both the
current surface pressures and the specified pressures. Any difference after convergence is due to the
“error” terms which were added to attain closure at the segment endpoints.

The example above shows a Mixed-Inverse calculation. A Modal-Inverse calculation would be done
by adding 21,22,. . . to input line 1 in mses.xxx, and adding 41,42,. . . to input line 2 instead of the 11,12
indicated.

MPLOT can of course be used anytime to examine the design in more detail. The final option 4
in MEDP saves the modified coordinates as a standard blade.xxx file.

3.6 Redesign rules of thumb

When the prescribed Cp distributions are edited inMEDP , it is useful to try to minimize the inevitable
modifications caused by the modes A1f1(s), A2f2(s) . . . that MSES will add to enforce geometric
closure. In general, the best type of Cp modification incurs minimal CL and CM changes, as shown in
Figure 4. In the sketch labeled “poor”, the new specified Cp (solid line) is likely to be substantially
altered by the modes, likely causing geometry glitches at the blend points which will need further
repair. In the sketch labeled “best”, the mode modification is likely to be minimal.

This behavior is consistent with Lighthill’s constraints, one of which states that the “average”
surface speed, in some weighted-integral form, cannot be changed. The “poor” modification clearly
tries to violate this constraint and will suffer a large mode correction. The other Lighthill constraints
are moment-type constraints, and again the “poor” modification tries to violate this the most. It is
effective to think of the Cp editing as a process where a fixed area under the curve is merely redistributed,
preferably with some degree of left-right symmetry.

4 Optimization

Optimization capabilities are no longer part of MSES 2.9 itself, but are now implemented in the external
interactive design/optimization driver LINDOP . To make use of LINDOP requires the specifying
some number of geometry deformation modes as additional global unknowns (21-29), and specifying
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their corresponding fixing constraints (21-29). In addition, element position modes (31-39) and their
fixing constraints (31-39) can also be specified. These translate/rotate the selected element(s) as rigid
bodies. In either case, MSES sets all the geometry and position mode amplitudes to zero during a
calculation, but it will still calculate the sensitivities of various quantities such as CL, CD, etc. to the
mode displacements. These sensitivities are written out to the unformatted file sensx.xxx, which is
then read in by LINDOP .

As mentioned earlier in the mses.xxx file description section, an alternative to specifying the
individual geometry mode flags (21-29) is to specify the single flag (20), and choose the number of
modes with NMODN. In the same manner, the (30) flag can be used in conjunction with NPOSN.

4.1 Geometry mode input file modes.xxx

All the geometry deformation modes selected in mses.xxx must be described in the file modes.xxx.
This has the following format.

KDOF(1) IMODE(1) GWT(1) ST1(1) ST2(1) IEL(1)

KDOF(2) IMODE(2) GWT(2) ST1(2) ST2(2) IEL(2)

. . . .

. . . .

KDOF(N) IMODE(N) GWT(N) ST1(N) ST2(N) IEL(N)

where,

a) KDOF ties the mode shape to one of the modal geometry unknowns chosen (DMODn = 21 . . . 20 +
NMODN). KDOF = 1 ties it to DMOD1, KDOF = 2 ties it to DMOD2, etc. A mode can be composed
of any number of disconnected pieces. Each piece of the mode is described on a separate line, each
beginning the same KDOF value.

b) IMODE specifies the mode (or mode piece) shape. The shapes are implemented in FUNCTION
GFUN or variants thereof (in gmodes.f). The particular shapes currently implemented are:

IMODE mode shape
n = 1 . . . 19 : sin(nπs/smax)
n = 20 : Local bump at leading edge, sized by local curvature
n = 21 . . . 40 : Tn−20(s/smax)
n = 41 . . .∞ : sina[π(s/smax)

b]
sina[π(1 − s/smax)

b]

Tn are Chebyshev polynomials, modified to be zero at the mode piece endpoints s/smax = 0, 1. These
are a good alternative to the simple sine waves (n = 1 . . . 19), since they give more resolution at the
endpoints. A good first choice for mode shapes is to use a reasonably large number of the Chebyshev
modes (IMODE = 21, 22, . . . ) over the entire upper and/or lower surface. This allows nearly arbitrary
geometry variations. The mode shapes selected can be plotted in LINDOP .

c) GWT is the mode-piece scaling factor. If a mode consists of only one piece, GWT has no effect, as it
merely rescales the mode amplitude variable. However, it is needed if the geometry mode is composed
of two or more pieces, and each piece must be scaled differently. An example is a pure camber mode,
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where two identical shapes are placed on opposite sides of the airfoil, and GWT is specified as +1.0 and
-1.0 for the two pieces (a positive mode displacement is taken as outward normal to the surface of the
airfoil). GWT is also significant in that it will alter the convergence behavior (but not the final answer)
of the steepest-descent optimization process. In this respect, it has been found advantageous to set the
GWT factors for all the modes so that the mode derivatives with respect to ST are all comparable in
magnitude.

d) ST1, ST2 are the mode endpoint locations on the airfoil. These are the normalized arc lengths
s/sside from the airfoil nose (not the stagnation point like with Mixed-Inverse!), to the trailing edge.
For example, specifying ST1, ST2 = 0.0, 0.5 will result in the mode extending over approximately
the front half of the airfoil. There is also the option to specify ST1 and ST2 as element x/c values.
The necessary code is presently hibernating in SUBROUTINE GNSET (in gnset.f) as comments, and
only needs to be enabled.

e) IEL specifies the target element on which the mode piece acts.

4.2 Element position mode input file moves.xxx

The moves.xxx file has the following format.

KDOF(1) GWT(1) XT(1) YT(1) IEL(1)

KDOF(2) GWT(2) XT(2) YT(2) IEL(2)

. . . .

. . . .

KDOF(N) GWT(N) XT(N) YT(N) IEL(N)

where,

a) KDOF ties the position mode to one of the element position variables chosen (DPOSn = 31 . . . 30
+ NPOSN). KDOF = 1 ties it to DPOS1, KDOF = 2 ties it to DPOS2, etc. KDOF should not be
repeated on different lines.

b) GWT specifies whether this is a translation or rotation mode.

GWT = 0 translation mode
GWT 6= 0 rotation mode of GWT radians per unit mode change

c) XT, YT are either the displacement vector components (if GWT = 0), or the rotation center absolute
coordinates (if GWT 6= 0).

d) IEL specifies the target element

The mode amplitudes DMODn and DPOSn are read in from a file params.xxx, which is generated
by LINDOP . This conveys the optimization changes to MSES for implementation. This file also
contains the flow parameters ALFAIN, CLIFIN, MACHIN, REYNIN, which will overwrite the values in
mses.xxx. A message is printed when this occurs to warn the user.
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4.3 Multi-point optimization setup example

Problem statement:

Minimize the CD of an airfoil weight-averaged over the two points

1. CL = 0.80, M = 0.75, Re = 5× 106

2. CL = 1.00, M = 0.65, Re = 5× 106

using four upper-surface perturbation modes, one lower-surface perturbation mode, and one camber-
line perturbation mode. The objective function to be minimized is

F ≡ 3CD1
+ 2CD2

Problem setup:

The two points will have the extensions xxx 01 and xxx 02. Examples of the two input files which
implement the above flow conditions and declare the mode shape variables are:

File mses.xxx 01:

3 4 5 7 20

3 4 6 7 20

0.75 0.80 0.0 | MACH CL ALFA

3 2 | ISMOM IFFBC

5.0E6 9.0 | RE ACRIT

0.1 0.1 | XTRS XTRP

0.97 1.0 | MCRIT MUCON

1 1 | ISMOVE ISPRES

6 0 | NMODN NPOSN

File mses.xxx 02:

3 4 5 7 20

3 4 6 7 20

0.65 1.00 0.0 | MACH CL ALFA

3 2 | ISMOM IFFBC

5.0E6 9.0 | RE ACRIT

0.1 0.1 | XTRS XTRP

0.97 1.0 | MCRIT MUCON

1 1 | ISMOVE ISPRES

6 0 | NMODN NPOSN

The airfoil geometry in the two state files mdat.xxx 01 and mdat.xxx 02 must of course always be
the same. It is simplest to use MSET with blade.xxx to create one mdat.xxx file, and then copy it to
mdat.xxx 01 and mdat.xxx 02. To ensure that the airfoil shape remains the same during optimization,
the modes.xxx nn files must be identical. For example:

Files modes.xxx 01 and modes.xxx 02:
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1 1 1.0 0.0 1.0 1 | Camber-line mode , DOF 21, mode shape 1

1 1 -1.0 0.0 -1.0 1 | "

2 5 1.0 0.0 1.0 1 | Upper-surface mode, DOF 22, mode shape 5

3 6 1.0 0.0 1.0 1 | Upper-surface mode, DOF 23, mode shape 6

4 7 1.0 0.0 1.0 1 | Upper-surface mode, DOF 24, mode shape 7

5 8 1.0 0.0 1.0 1 | Upper-surface mode, DOF 25, mode shape 8

6 2 1.0 0.0 -1.0 1 | Lower-surface mode, DOF 26, mode shape 2

KDOF IMODE GWT ST1 ST2 IEL

The mode weights of ±1.0 in the third column are appropriate if all the modes shapes as defined in
FUNCTION GFUN have comparable derivatives. These weights can be effectively changed later by
rescaling in LINDOP .

The optimization process is started by first converging the two xxx 01 and xxx 02 cases:

% mses xxx_01

% mses xxx_02

One optimization cycle then consists of executing LINDOP , and reconverging all cases with
MSES again:

% lindop xxx

% mses xxx_01

% mses xxx_02

This is repeated as long as deemed necessary. Of course, MSIS can be used instead of MSES if
appropriate.

If many xxx nn cases are involved, it is convenient to use the case-sequence shell script mseq to
converge all of them. For example,

% mseq mses xxx 1 10

is equivalent to

% mses xxx_01

% mses xxx_02

.

.

% mses xxx_10

The isentropic variant msis can be specified in the first argument to mseq:

% mseq msis xxx 1 10

The LINDOP User’s Guide discusses the optimization procedures in much greater detail.
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5 General hints

5.1 CPU times

Using MSES or its variants requires substantial computational resources, especially memory. A single
solution will require anywhere between 2 Newton iterations for a subcritical inviscid case, to ∼ 15 or 20
iterations for a separated viscous case. For a relatively large grid size, 280×50 say, each iteration might
require about 20 seconds on a high-end workstation. This translates to an execution time somewhere
between 30 seconds to 10 minutes. A more-typical (220× 40) grid for a two-element airfoil will require
about 10 seconds per iteration. As mentioned earlier, the subcritical code versions will require about
1/2 to 1/4 of these times. Also, fewer elements require fewer grid streamlines, which can drastically
reduce computational time. In general, solution time scales as I × J3, where I is the number of quasi-
normal lines, and J is the number of streamlines. Thus, streamwise resolution is relatively cheap, but
normal resolution is expensive. Fortunately, MSES is extremely insensitive to normal resolution, while
streamwise resolution may have a strong impact if small viscous features (e.g. separation bubbles) are
present.

As mentioned previously, grid coarsening/refining can be very useful in reducing the overall CPU
time. It is especially effective in transonic cases with propagating shocks, and with low Reynolds
number cases with propagating separation bubbles.

On Unix machines with modest cache memory sizes, it might be beneficial to make the physical
array dimensions IX,JX,NBX, (in STATE.INC) as small as possible. This will reduce the likelyhood of
cashe misses during matrix solution and possibly give a significant CPU saving. Of course, reducing
the array dimensions may have no effect on run times at all.

5.2 Sequence of solutions

When a sequence of solutions is needed, the CPU time per solution can drop substantially due to the
quadratic convergence property of the Newton method used by MSES . Once a converged solution is
obtained, convergence to a nearby solution after a small α or M∫ (say) change is quite rapid, requiring

only 3 or 4 additional iterations. MPOLAR takes full advantage of this property.

While the Newton solution method is very efficient for converging small parameter tweaks, it in-
tensely dislikes large changes. Trying to reconverge a solution after a drastic parameter change, such as
going from α = 0 to α = 10 degrees, is definitely not a good idea, especially if a viscous case is involved.
Clearly, runs should be sequenced so that such large changes are avoided. MPOLAR should be used
whenever possible, since in addition to making an efficient gradual sweep in α, it is able to squeeze one
“free” Newton iteration out of stored residual information everytime α is changed.

5.3 Starting difficult viscous cases

Some viscous cases can be more effectively computed if the case is first partially converged as an
inviscid case (REYNIN set to zero). This is especially true for transonic cases, or if the case to be
converged corresponds to a significantly different lift than what was used by MSET to generate the
initial streamline grid. Solid-wall (IFFBC=1) and free-jet (IFFBC=3) cases will benefit the most from
this procedure, since MSET assumes an infinite flow (IFFBC=2) to generate the initial grid, which
can be quite different from the final converged grid.
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5.4 More MSES Hints

1. Any separation bubble must be well-resolved, especially on the suction side, since what goes on at
the bubble has a strong impact on CD and CLmax. The default grid is usually adequate for most
cases, but maybe not if the bubble is close to the leading edge and very small in streamwise extent.
A NACA 0010, near CLmax, for example, has a small but intense bubble near the leading edge
which requires an unusually fine grid spacing there. Moderate Reynolds numbers (1-3 million, say)
require the finest grid, since the bubbles are then still important, but very small. Streamwise grid
spacing is ”cheap”, increasing the solution time only linearly, so it may be simplest to increase the
grid point number parameter N in MSET to 150 or more. Inadequate bubble resolution results
in a ”ragged” or ”scalloped” CL vs CD drag polar curve, so this is easy to spot.

2. If the initial grid was generated at an α which differs from the specified α by more than a few
degrees, it is best to partially converge the case with MSES in the inviscid mode, until the
specified α is reached. This is particularly true if free transition is used and large transition-point
movement is expected. This is rarely necessary with fixed-transition cases.

3. If one of the elements has a cove region (where the flap is nested when not deployed), it is again
best to first analyze the configuration at a representative angle of attack, and approximately
determine the point of separation before the cove. Full convergence is not necessary here. This
point can have a corner added (manually or in AIRSET ). This will signal MSET to have the
initial grid leave the surface here and thus simulate a massively separated region.

4. For a large α polar sweep, it is best to grid the configuration at an α near the middle of the
range, and calculate the polar in two pieces — one going up in α, the other going down. It may
be necessary to increase the local grid node concentration above and below the leading edge, so
that as these points get dragged onto the leading edge, the resolution there remains reasonably
good. An alternative approach is to generate two grids — one near each end of the α sweep. The
polar calculation then proceeds in two pieces from each end to the middle.
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