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Preface

The writing of this book has arisen as a natural next step in my profession as a
teacher, researcher, program developer, and user of the Finite Element Method.
Of course one can wonder, why I am writing just another book in Finite Elements.
The answer is equally obvious as simple. After many years in the field I have, as
have many others, discovered a large variety of pitfalls or mistake done by others
and myself. I have now reached a point where I would like to describe my view
of the topic. That is, how to understand it, how to teach it, how to implement it
and how to use it; these will be main goals for the discussion to come!

The discussion to come will be influenced by experiences from all four of these
branches. As a teacher I have taught both basic and advanced courses in Finite
Elements with focus on both Solid Mechanics and Heat Transfer applications.
These courses have been given at the Linköping University in the mechanical
engineering programme.

The text to come is written by an engineer for engineers. One overall goal
for the description is to try to cover every step from how a certain mathematical
model appears from basic considerations based on fact from reality, to a classical
formulation with its possible analytical solutions, and finally over to a study of
numerical solutions used by a Finite Element program based on a certain finite
element formulation.

That is, discussing the finite element method from the early beginning to the
very end.

The great challenge is to make this as short and interesting as possible without
loosing or breaking the mathematical chain. It is strongly believed that for
success in learning Finite Elements it is an absolute prerequisite to be familiar
with the local equations and their available analytical solutions. I think most
people who have tried to teach Finite Elements agree upon this, traditionally
however, most education in Finite Elements is given in separate courses. Why
not try to teach Finite Elements in close connection to where the basic material
is taught. That is, integrate Finite Elements together with basic material in the
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same course!
Of course, Finite Elements can be taught as a weighted residual method for

approximate solutions of sets of coupled partial differential equations without
discussing any physical application and just focusing on existence, uniqueness
and error bounds of the solution. This is of course also important but for most
students studying different engineering disciplines Finite Elements will be a tool
for trying to understand and predict the behavior of reality. An important focus
in studies of finite element formulations of different engineering disciplines is to
be aware what should be expected of the quality of the approximate numerical
solution. This can only be learnt by knowing the most important details of
the mathematical background and then solving numerical problems having an
analytical solution to compare with.

Another aspect important for engineers working with the method as a daily
tool, is how to use the method as efficiently as possible both from a time-
consuming and a computer resources point of view.

Over a period of at least 15 years I have worked with the graphical finite
element environment TRINITAS. This is a stand-alone tool for optimization,
conceptual design and education as well as for general linear elasticity and heat
transfer problem both as steady-state, transient or as eigenvalue problems. It is
an Object Oriented program based on a graphical user interface for manipulation
of the database of the program. This program contains procedures for geometry
modeling, domain property and boundary conditions definition, mesh generation,
finite element analysis and result evaluation. The program is used in eduction at
different levels. It is used in basic courses in Finite Elements at an undergraduate
level and also in advanced course where the students add their own routines for
instance; element stiffness matrix, stress calculations in elasticity problems or
utilizing ready-to-use routines for crack propagation analysis. This finite element
environment has also been used for testing of different research ideas and for
solving of different industrial engineering applications.

This program will be used throughout the text in this book as a tool for
analysis of all examples given during the discussion of different finite element
applications.

The ideas and the arguments given above have been the main driving force for
doing this work. Hopefully, this book will prove useful as both an introduction
of the method and also a standard tool or companion to be used during daily
finite element work.

Bo Torstenfelt

November, 2007



Reader’s Instruction

Readers that have never studied Finite Elements are recommended to first read
the bar chapter (chap. 3) ”from the early beginning to the very end” very care-
fully. It is the author’s belief that this chapter is detailed enough to serve as
a stand-alone base for self-studies where the reader is recommended to, during
reading the text, perform a complete rewriting of the basic mathematical chain.

Every chapter to come is written in a manner and with an aim to be more
or less self-contained for the reader with sufficient pre-qualifications. Typical
required qualifications are 2 years studies at undergraduate level of any of the
most common engineering programmes.

Concerning the layout of the text; there are important keywords which will
appear as Margin text . As a student reading the text for the first time one should, Margin text
after reading a certain chapter or section, go back and use these margin texts
as reminders for having reached a sufficient level of understanding of different
important concepts.

One major challenge when trying to describe Finite Elements is to give suffi-
cient detail without making it too lengthy. That is the reason why some in-depth
material is given at the end of the book rather than where it appears for the first
time.
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Notation

Notation principles used in this book are summarized below. If a letter or symbol
is used twice with a different meaning, the letter or symbol will be given twice
in this list.

As such, if a concept defined by a letter or symbol has several different used
names describing the same and equivalent interpretation, all will be given below.

General mathematical symbols

a A scalar value
a A column vector written as a bold lower-case letter
ai A coefficient in a vector
A A matrix written as a bold upper-case letter
C0 The set of all continuous functions
C1 The set of all functions having a continuous first-order derivative
L Local equations
S Strong formulation
W Weak formulation
G Galerkin formulation
M Matrix problem
nsd Number of spatial dimensions
nel Number of elements belonging to the mesh
nn Number of nodes belonging to the mesh
ne

n Number of nodes belonging to an element
nf Number of unknown freedoms in the mesh
np Number of prescribed freedoms in the mesh

ix



Latin symbols

A An area or cross-sectional area
a The global unknown vector, the global displacement vector, the

global degrees of freedom (d.o.f.) vector
ae An element-local unknown vector, element-local degrees of free-

dom (d.o.f.) vector
b, b Load per unit volume or length
B Global kinematic matrix
Be Element-local kinematic matrix
Ce Boolean connectivity matrix
c, ci An arbitrary vector used for the weight function
c Element nodal coordinate vector
cp Specific heat coefficient
xi, yi, zi Nodal coordinate components
D Elasticity matrix in flexibility form
D Thermal conductivity matrix
E Young’s modulus of elasticity
E Elasticity matrix in stiffness form
f Global load vector
fd Global load vector from internal distributed forces
fg Global load vector from essential boundary conditions
fh Global load vector from natural boundary conditions
fr Global reaction force vector
G Shear modulus
G Global operator matrix, gradient matrix
g, g Essential boundary conditions (multi-dim or 1D)
h, h Natural boundary conditions (multi-dim or 1D)
I Area moment of inertia
J Jacobian matrix
K Global stiffness or conductivity matrix
Ke Element stiffness or conductivity matrix
L Length
M Bending moment
N Global shape function matrix



Ni A global shape function
N e Element-local shape function matrix
Ne

i A element-local shape function
N Axial force in bars or beams
Q Heat generation per unit length
q, q Heat flux per unit surface (multi-dim or 1D)
qn Heat flux perpendicular to the surface
q Load per unit length
R Residual vector
r Unbalanced force vector or discrete residual vector
T Temperature
T∞ Surrounding temperature
T Shear force
t Time
t Thickness
t Traction vector
ti A test function
S Surface
S Statical moment, the first moment
S Stress tensor
Sg The part of the surface where essential boundary conditions are

known
Sh The part of the surface where natural boundary conditions are

known
s Stress vector
u Displacement vector
u, v, w Displacement vector components
w, w Weight function (vector-valued or scalar-valued)
V Volume
x, y, z Global coordinates

Greek symbols

α Thermal expansion coefficient
α Thermal convection coefficient
δij Kronecker delta



φi A weight function
ε Normal strain
ε Strain component vector
θi Nodal rotation component
λ Heat conductivity
ν Poisson’s ratio
% Density
σij Normal stress component
τij Shear stress component
ξ, η, ζ Local coordinates



Chapter 1
Prelude

Nowadays Finite Elements are the standard tools for doing simulations in a large
variety of engineering disciplines. Finite Elements are no more a tool for just a
limited number of enthusiastic experts; they are something all of us as engineers
have to learn.

One reason for why this method still, to some extent, is looked upon as a
technique which you as an engineer can decide not to learn is probably because
it is believed to be too difficult and time-consuming.

It is now time to change this option once for all. All of us can learn Finite
Elements. Every engineer must know at least some basic facts from Finite Ele-
ments applied to some of the most important fields of application. When trying
to learn Finite elements it is important and useful to have a solid knowledge of
the physical problem, models of it and their analytical solutions. That is why
Finite Elements should be studied in close connection to overall basic studies of
a certain engineering discipline. Finite Elements is just a approximate numerical
tool for solving some basic local equations constituting a mathematical model of
reality.

A reason for why this technique is still looked upon as difficult to learn is
probably that most text books are written by dedicated researcher in different
fields of finite element applications. As an author one probably tends to describe
the method from a mathematical point of view as consistently as possible and
with a notation perhaps never previously seen by the students.

The technique is now so well-established that from a mathematical point of
view most features and deficiencies are known in a variety different mathematical
formulations of different important problems.

In this text we will learn why the method works, how the method works both
analytically and numerically, how to use the method in typical daily engineering
applications and, probably most important lesson what properties one should

1



2 1.1. BACKGROUND

expect form the numerical approximation of the unknown entities. It is the
author’s intention to write a text covering details from the early beginning of a
discussion of the model of reality, which we as engineers would like analyze, to
the very end where we have the results from the finite element analysis.

General Features of the text:

• Every finite element application will start from the early beginning of its
application with a discussion concerning which are the basic equations, why
must they hold and what are the basic physical assumptions.

• Every important concept and expression will be deduced and the mathe-
matical chain will be unbroken throughout the text.

• The mathematical language will be simple and concise

• The text will not be weighed down by any rigorous mathematical proof of
important statements.

• Every finite element application will end up in one or more solved examples
by the finite element program TRINITAS.

• The text will also serve as a theoretical description of what is implemented
in this program

1.1 Background

Finite Elements have been described over the last decade in several different
ways. In the early beginning it was described as a Rayleigh-Ritz method for
elasticity problems and later on as a general tool for solving of partial differential
equations of various kinds, always based on a so called weak formulation. From
a mathematical point of view, the first description was based on Calculus of
variations and a modern formulation is now based on Functional analysis and
the theory of linear vector spaces.

Important basic work was done by Courant during the first part of the 1940’s
and the word ”finite element” was coined in 1960 by Clough. Interest from engi-
neers working with different aeronautical industrial applications was one of the
main driving forces during the development of the finite element method. Dur-
ing the 1970’s the first general-purpose commercial finite element packages were
available and other engineering disciplines started to use the method. The de-
velopment of different computer based support activities such as preprocessing
of finite element input and postprocessing of finite element output, and the over-
all success of the method has become possible due the fast increasing computer
power which has been going on in parallel. Today Finite Elements are one im-
portant cornerstone in the entire Computer-Aid Engineering (CAE) environment
containing most engineering activities needed to be done in most engineering
branches.
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1.2 The Big Picture

Nowadays Finite Elements are used in a large variety of engineering disciplines.
Typical fields are elasticity and heat transfer problems in solid bodies and acous-
tics and fluid flow problems in fluids. A large number of different linear or
non-linear, steady state or transient problem classes exist. All these applications
are sometimes called Computational mechanics. If the scope is even further ex- Computational

mechanicstended, use of Finite Elements is also possible and straightforward in magnetic
field and diffusion problems etc..

This text will concentrate on elasticity and heat transfer problems which are
the most important applications of Finite Elements among all different compu-
tational mechanics disciplines.

A rather limited number of physical entities well-known by most mechanical
engineers will be used in these formulations. In elasticity problems the displace-
ment vector u and in heat transfer problems the temperature T is of great im-
portance. In fluid flow problems the velocity vector v, the pressure p and the
density ρ are basic unknowns. In acoustic problems the pressure p once again is
of great importance. Please observe that the velocity v is just the time derivative
of the displacement u. In several transient (that is time-dependent) problems we
will also have need for further time derivatives such the acceleration vector a.

In elasticity problems the stress components σij and the strain components
εij will be important ingredients. In heat transfer problems we will also have to
put focus on the heat flux vector q. To be very detailed the list can be made
longer but the general conclusion so far is that the total number of physical
entities needed to be familiar with is rather limited even if we are discussing the
entire field of computational mechanics.

Typical to models of all those disciplines is that they consist of a limited
number of equations of different types.

The first group of equations to be brought up in this discussion is the Balance
laws motivated from basic behaviour of nature. There is the Newton’s second law, Balance law
f = ma requiring that all forces acting on a body most be in equilibrium. This
balance law is the base for elasticity problems. In heat transfer problems the
governing balance law is the Conservation of Energy, the first law in Thermo-
dynamics. This equation only means that energy is undestroyable. There is also
a third important balance law governing fluid flow problems; this is Conserva-
tion of Mass. These three balance laws govern most computational mechanics
applications. In more complex, and probably non-linear applications, sometimes
several or all of these balance laws have to be utilized.

A second group of equations is the Constitutive relations. Typical to these Constitutive
relationequations are that they all are empirical equations established through experi-

mental studies. Common to these equations are also that they try to describe
the behavior of a solid material or a fluid in terms of some useful measures.
In elasticity problems a first choice is the generalized Hooke’s law and in heat
transfer the Fourier’s law is equally common. In fluid flow calculations a New-
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tonian fluid flow behavior is the first and simplest choice for domain property
characterization.

Another important classification of a typical finite element formulation is
whether the problem ends up in a Scalar-valued or Vector-valued problem. InScalar-valued

Vector-valued
the discussion to come we will find out that the displacement vector u will be the
basic unknown and in the heat transfer problem the temperature T will be the
basic unknown. That is the elasticity problem is a vector-valued problem and
heat transfer problem is scalar-valued problem which be described in detail later
on.

In cases where we are studying vector-valued problems, there is also a need
for a relation coming from a third group of equations. The group referred to
here is the group of Compatibility relations. Typical to this group of equationsCompatibility

relation is that they try to predict how deformations in a matter will take place. Such
equations will always put up some relations for how different components must
related to each other. In scalar-valued problems there is never need for any
relation belonging to this group.

What has been discussed so far is what is typical or is in common between
different mathematical formulations of different fields of application of the finite
element method. Also, from a numerical point of view, several overall important
comments can be made for what is typical or shared between different finite el-
ement applications. As a user of a finite element program it is probably equally
important to be aware of what is going on in the computer during different types
of finite element analysis. In elasticity and heat transfer steady-state problems
we will find out what the computer has to solve of System of linear algebraic equa-
tions. In cases of studying time-dependent problems our mathematical discussionSystem of linear

algebraic
equations

will end up in systems of algebraic coupled ordinary differential equations in time
which have to be solved numerically by any of some time integration scheme. An
important aspect of such time integration schemes is if the scheme is implicit
or explicit. These schemes have different merits and where fields of application
rarely overlaps.

From a numerical point of view we will also find another typical group of Lin-
ear Eigenvalue problems. The most important applications are dynamic eigen-Linear

Eigenvalue
problems

value problems and linear buckling problems.
In non-linear problems one sooner or later has to introduce a linearization of

the equations and from a numerical point of view an iterative scheme based on
Newton’s method has to be employed.

This section only tries to give the reader an overview of the topic. Perhaps
some of the keywords discussed have been touched upon in some other courses or
contexts. Some of the algorithms and numerical techniques needed here probably
have been studied in previous mathematical courses.

If some of the material discussed here is hard to understand it is very natural
because this is an overview and more detail will be given later on. This section
will probably serve equally well as a summary and not only as an introduction
of the topic.



Part I

Linear Static Elasticity
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Chapter 2
Introduction

In most engineering activities where Solid Mechanics considerations have to be
taken into account, a good start is to assume a linear structural response and a
load that is applied in a quasi-static manner. This is one of the simplest models to
study and such an analysis can be classified as a Linear Static Elasticity analysis. Linear Static

ElasticityA huge majority of all engineering analysis work done, with the purpose of trying
to investigate Solid Mechanics properties of a structure, belongs to this class of
analysis and in many cases such an analysis will serve as a proper final result
from which most overall engineering decisions can be taken.

In this part of the text linear strain-displacement relations (small displace-
ments) and linear elastic stress-strain displacements will be assumed. If also all
boundary conditions are constant and independent of the applied load the struc-
ture will show a linear response. In this part of the text the discussion will also
be limited to problems with quasi-static load application; no inertia forces will
be included.

In Solid Mechanics there exists a sequence of approximation levels based on
different displacement assumptions giving a true 3D deformable body more or
less freedom to deform. In the following, several of the most important of these
basic displacement assumption ideas will be discussed in terms of the basic local
equations, strong and weak formulations, and finally appropriate finite element
formulations. In the text below the discussion will start with the bar assumption
which is the assumption that gives a real 3D body the least deforming possibili-
ties.

In the following chapters there are also finite element formulations given for
beams, 2D and 3D solids and finally, Mindlin-Reissner shell elements.

In all these chapters, motivated by different basic displacement assumptions,
the entire chain of equations will be given. The experienced reader will quickly
look through this and understand that very much of the structure and overall
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basic nature of the equations are closely related in-between these different for-
mulations for bars, beams and solids. That is, basic relations could have been
written more generally once and only referred to in the next chapters.

But the text to come is, as already mentioned, written with a goal that a
chapter or an application should be self-contained with minimum requirement
for jumping in one direction or another in the text. Another typical feature for
the text is that every discussion will start at the early beginning of the application
by a thorough discussion of the local equations constituting the model of reality.

After these element-specific topics the text will continue with general dis-
cussions concerning how to assemble and solve the system of linear algebraic
equations. Different direct and iterative algorithms and techniques for finding
the solution will be given.

In the last chapters in this Linear static elasticity part of the text are dis-
cussions of some further important aspects concerning how to treat and analyze
linear static elasticity problems. Sometimes there is need for transformations of
different kinds. For example, one probably would like to introduce a skew sup-
port not parallel to any of the global directions; that is there will be need for a
transformation of one or several element stiffness matrices.

In a large typical industrial finite element analysis there is likely to be a need
for combining different element types to each other. This can be done by the
imposing of constraints on the system of equations. A large variety of different
possibilities exist. The text will also cover how to numerically solve systems of
equations containing constraints.

The last sections in the Linear static elasticity part of the text will actually
discuss a problem which is non-linear. That is frictionless contact problems where
the basic problem is to find the extent of the contact surface. The contact surface
is the part of the boundary where two contacting deformable bodies only transmit
compressive normal stresses. In a general case the extent of this surface is a result
of the analysis and it has to be established by iterations. A force-displacement
relation is in the general case non-linear because of change of contact surface.
An obvious typical real situation is a ball or roller bearing.



Chapter 3
Bars

Consider a straight slender body with a smoothly changing cross section A(x) and
with a length L. Let us now assume that all loads applied to the body act in the
direction of the extension of the body, which is the local horizontal x-direction,
see figure 3.1. There is a distributed load, h per unit surface [N/m2] at the right
end and a distributed load, b(x) per unit length [N/m], acting in the interior of
the body. That is, the body will not be exposed to any bending loads and the
body will only be stretched in it’s own direction. If it is necessary to include
bending of such a slender structure we have to move to the beam displacement
assumption discussed in the next section.

In figure 3.1 the left end of the bar has been given a known prescribed dis-
placement g, where g << L, and E(x) is the Young’s modulus of the material.

x

A(x), E(x)

hb(x)
g

x = Lx = 0.

Figure 3.1: A typical bar structure

3.1 The Bar Displacement Assumption

Under the circumstances described above the Bar displacement assumption is Bar
displacement
assumption9
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applicable. That is, every plane perpendicular to the x-axis is assumed to undergo
just a constant translation in the x-direction and the initial plane will remain flat
in it’s deformed configuration.

By introducing this assumption the displacement u will be a function of x
only as illustrated in figure 3.2.

Undeformed body

Deformed body

u(x)

Figure 3.2: A typical bar deformation

This means that only one stress component σ(x) and one strain component
ε(x) will be non-zero at every cut x through the bar. That is, from a mathematical
point of view this problem is locally one-dimensional.

This model of reality will only involve three different unknown functions, the
displacement u(x), the strain ε(x) and the stress σ(x) in the interior of the body
which has to be calculated under consideration of influence from the boundary
conditions g and h.

3.2 The Local Equations

To be able to analyze this model there is need for at least three different equations.
As mentioned in the introduction, all models proposed for studying different

physical phenomena always have to fulfill at least one balance law. In this case
a statical equilibrium relation will serve as the balance law. Equilibrium for a

N(x) N(x+∆x)b(x)∆x

∆x

Figure 3.3: Forces acting on a slice ∆x of a 1D bar model

short slice of length ∆x of the bar requires

N(x + ∆x)−N(x) + b(x)∆x = 0 (3.1)
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where Taylor’s formula gives

N(x + ∆x) ≈ N(x) +
dN(x)

dx
∆x (3.2)

and the axial force N(x) can be expressed in the stress σ(x) and the cross-
sectional area A(x) as follows

N(x) = A(x)σ(x). (3.3)

These three equations (3.1) to (3.3) defines a Balance Law in terms of the stress Balance Law
σ(x) and after division by ∆x we have

d

dx
(A(x)σ(x)) + b(x) = 0. (3.4)

Typically, this equation always must hold independent from what stress-strain
or strain-displacement relations will be assumed later on.

In this context, as we already have indicated, a linear elastic Constitutive
Relation (the 1D Hooke’s law) Constitutive

Relation
σ(x) = E(x)ε(x) (3.5)

will be used and a linear compatibility relation (small displacements) can be
deduced by using the displacement u at the two positions x and x+∆x in figure
3.4.

∆x

u(x)

u(x+∆x)

Undeformed 

body

Deformed

body

Figure 3.4: Typical bar deformation

The linear strain measure ε(x) is defined as the change in length over the
initial length ∆x as follows

ε(x) =
u(x + ∆x)− u(x)

∆x
=

u(x) +
du(x)

dx
∆x− u(x)

∆x
=

du(x)
dx

(3.6)
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and this will serve as a Compatibility Relation for a linear 1D bar structure.Compatibility
Relation These three basic local equations 3.4 to 3.6 can be summarized in the box L

as follows

Box:L ‘Local Equations in 1D Linear Static Elasticity’

d

dx
(A(x)σ(x)) + b(x) = 0

σ(x) = E(x)ε(x)

ε(x) =
du(x)

dx

and these equations have to be fulfilled at any position inside the open domain
Ω =]0; L[. One obvious remark is of course that there is no influence form the
boundary conditions so far.

3.3 A Strong Formulation

One of several possible ways to start the analytical work for solving this system
of equations is to eliminate the stress σ(x) and the strain ε(x) by putting the
constitutive relation and the compatibility relation into the balance law.

After introducing the boundary conditions from figure 3.1 the following well-
posed boundary value problem S can be established.

Box: S ‘Strong form of 1D Linear Static Elasticity’

Given b(x), h and g. Findu(x) such that

d

dx

(
A(x)E(x)

du(x)
dx

)
+ b(x) = 0 ∀ x ∈ Ω

u(0) = g on Sg

E(L)
du(L)

dx
= h on Sh

Remarks:

• This formulation S constitutes a Strong formulation of a linear static 1D
Bar problem and from a mathematical point of view this is a 1D second-
order mixed Boundary-Value Problem1D second-order

mixed
Boundary-Value

Problem
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• u(0) = g is a non-homogeneous Essential boundary condition. If g = 0 the Essential
boundary condition is homogeneous.

• The total surface S consists in this 1D case only of the two end cross sections
Sh and Sg.

• The differential equation is an example of a second order ordinary one.

• E(L)du(L)/dx = h is a Natural boundary condition. Natural

• The boundary value problem is mixed because there are both essential
and natural boundary conditions. Later on we will be aware of that some
essential boundary conditions always have to exist to be able to guarantee
the uniqueness of the solution of the matrix problem M.

3.4 A Weak Formulation

A Strong formulation can always be transferred into an equivalent Weak formu-
lation by multiplication of an arbitrary Weight function w(x) and an integration Weight function
over the domain.

∫ L

0

w

(
d

dx
(AE

du

dx
) + b

)
dx =

∫ L

0

w
d

dx
(AE

du

dx
) dx +

∫ L

0

wb dx = 0 (3.7)

After partial integration of the first term the following is obtained.

[
wAE

du

dx

]L

0

−
∫ L

0

dw

dx
AE

du

dx
dx +

∫ L

0

wb dx = 0 (3.8)

The first term in the equation above can be rewritten as the natural boundary
condition h can be identified form box S as

[
wAE

du

dx

]L

0

= w(L)A(L) E(L)
du(L)

dx︸ ︷︷ ︸
= h

−w(0)︸︷︷︸
= 0

A(0)E(0)
du(0)
dx

(3.9)

By putting one specific restriction on the weight function w(x) and no longer
letting the function w(x) be completely arbitrary an infinite set V of functions
can be defined where every choice of weight function w(x) must be equal to zero
on the part of the boundary where essential boundary conditions (Sg) are defined.

V = {w(x)|w(x) = 0 on Sg} (3.10)

An appropriate Weak formulation W of this 1D Bar problem can be summa-
rized as follows.
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Box:W ‘Weak form of 1D Linear Static Elasticity’

Given b(x), h and g. Findu(x) such that
∫ L

0

dw(x)
dx

A(x)E(x)
du(x)

dx
dx =

∫ L

0

w(x)b(x) dx + w(L)A(L)h

u(0) = g on Sg

for all choices of weight functions w(x) which belongs to the set V

Remarks:

• This weak formulation W serves as an efficient platform for applying nu-
merical techniques such as weighted residual methods for solving this bar
problem approximately.

• The partial integration step is performed because it opens the possibility
to end up in a symmetric system of linear algebraic equations that is more
efficiently solved in the computer compared to a non-symmetric system.

• The natural boundary condition is now implicitly contained in the integral
equation.

• It is possible to show that the Strong and Weak formulations are equivalent.

3.5 A Galerkin Formulation

The basic reason for first turning the local equations into a Strong formula-
tion and after that transfer the problem into an equivalent Weak formulation is
that the weak form can be utilized as a base for a variety of different Weighted
Residual Methods that all are capable of solving our basic bar problem, at leastWeighted

Residual
Methods

approximately.
General to these methods are that both the unknown function u(x) and the

weight function w(x) are built up from finite sums of n functions.

u(x) ≈ uh(x) = t1(x)a1+t2(x)a2+. . .+tn(x)an+t0(x) =
n∑

i=1

tiai+t0(x) (3.11)

and

w(x) = φ1(x)c1 + φ2(x)c2 + . . . + φn(x)cn =
n∑

i=1

φici (3.12)
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Remarks:

• The functions ti(x) are called Test functions. Later on further details Test functions
and rules will be given concerning how to select these functions and what
properties they must fulfill.

• The function t0(x) must be there to secure that the non-homogeneous es-
sential boundary condition u(0) = g will be fulfilled. Further details will
be given below.

• All ai are unknown scalar constants. In the case when all test functions
has been established the only unknowns are all these ai.

• The arbitrariness of the weight function selection w(x) is by this technique
further limited to the choice of the n functions φi(x) and the value of each
of the scalars constants ci.

• By this introduction of finite series consisting of n functions our problem
turns over from a Continuous one with infinite number unknowns to a Continuous
Discrete one with a limited number of unknowns

Discrete
One of the most popular weighted residual methods is the Galerkin method .

Galerkin methodOne reason for this is that this method always will generate symmetric systems
of linear algebraic equation which is more efficiently solved in the computer com-
pared to non-symmetrical ones. Here the basic idea is

ti(x) = φi(x) = Ni(x) i = 1, 2, , , n (3.13)

that if a selection is done of the test functions ti every function φi also is defined
and vice versa.

Please observe, that from here these functions (the test and the weight func-
tions) most often will be called Shape functions and the notation Ni(x) will be Shape functions
used.

By moving over from sums to a matrix notation the approximation uh(x) and
the weight function w(x) can be rewritten as follow

uh(x) = N(x)a + t0 (3.14)

w(x) = N(x)c ⇒ w(x) = cT NT (x) (3.15)

where

N(x) =
[
N1(x) N2(x) . . . Nn(x)

]
, a =





a1

a2

...
an





, c =





c1

c2

...
cn





. (3.16)

Concerning equation (3.15) the two alternatives are equal and actually the later
will be mostly used.
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Before some general and mathematically more precise rules will be given con-
cerning what properties a certain choice of shape functions Ni have to fulfill, one
possible choice among many others, will be given and discussed from an intuitive
point of view.

In this particular bar problem we have now accepted an idea where an ap-
proximation is introduced for the displacement u(x) in the bar. Later on we will
find out that this will of course also generate approximate solutions for the stress
and strain in the bar.

The simplest possible assumption is to think of the displacement approxima-
tion uh(x) as a piece-wise linear polygon chain. Such a function is continuous
in its self but the first derivative is discontinuous. The question is now how to

x

x = Lx = 0.

g

u(x) Exact solution

Piece-wise linear approximation

Figure 3.5: A 1D bar displacement approximation assumption

express such a piece-wise linear function as convenient and efficient as possible
with n linear independent parameters typically stored in the column vector a.

Let a number of n + 1 so called Nodes xi be defined inside and at the endsNodes
of the domain Ω from 0 to L. The interval between two nodes is called a Finite
element . As a first choice of functions Ni a set of piece-wise linear functionsFinite element

x
0
 = 0. x

1
x

2
x

i-2
x

i-1
x

i
x

i+1
x

i+2
x

n-1
x

n

N
1
(x) N

1
(x) N

n
(x)N

i-1
(x) N

i
(x) N

i+1
(x)

1.

Figure 3.6: One possible choice of shape functions Ni for a 1D bar problem

will serve as a base for further discussions and so far they are only defined from
intuitive reason and from figure 3.6 as follows
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N̄1(x) =
{

(x1 − x)/(x1 − x0) 0. ≤ x ≤ x1

0. x1 ≤ x ≤ xn
(3.17)

Ni(x) =





0. x0 ≤ x ≤ xi−1

(x− xi−1)/(xi − xi−1) xi−1 ≤ x ≤ xi

(xi+1 − x)/(xi+1 − xi) xi ≤ x ≤ xi+1

0. xi+1 ≤ x ≤ xn

(3.18)

Nn(x) =
{

0. x0 ≤ x ≤ xn−1

(x− xn−1)/(xn − xn−1) xn−1 ≤ x ≤ xn
(3.19)

Remarks:

• In a typical interval the unknown function will be approximated by a linear
function as follows

u(x) ≈ uh(x) = Ni−1(x)ai−1 + Ni(x)ai ∀ xi−1 ≤ x ≤ xi (3.20)

where only two shape functions at the time will be non-zero and influence
the approximation at an arbitrary point inside the interval.

• All these functions Ni have a unit value at one node and are zero at all
other nodes. That is, the following holds

Ni(xj) = δij =
{

1. i = j
0. i 6= j

(3.21)

which means that the shape functions are linear independent at the nodes.

• That is, the vector a will represent the displacement in the nodes.

• It is also possible to show that these shape functions Ni(x) are linearly
independent at an arbitrary position inside the intervals.

From a general mathematical point it is possible to show that such a linearly
independent choice of shape functions Ni(x) will span a n-dimensional sub-
space from which the approximation will be received.

• Another important property that has to be fulfilled by a certain choice of a
shape function Ni(x) is that the function must belong to the set C0 which
consists of all continuous function Ni(x) which fulfills

∫

Ω

(
dNi(x)

dx

)2

dx < ∞. (3.22)
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• The function t0(x) can now be constructed from the N̄1(x) function as
follows

t0(x) = N̄1(x)g ⇒ t0(x ≥ x1) = 0. (3.23)

By putting the equations (3.14), (3.15) and (3.23) into the weak formulation
W the following discrete Galerkin formulation will be achieved.

∫ L

0

d

dx
(cT NT )AE

d

dx
(Na + N̄1g) dx =

∫ L

0

cT NT b dx + cT NT (L)A(L)h

The vector cT can be brought out as follows

cT

{∫ L

0

d

dx
NT AE

d

dx
(Na + N̄1g) dx−

∫ L

0

NT b dx−NT (L)A(L)h

}
= 0

and a matrix B(x) can be defined as

B(x) =
dN(x)

dx
=

[
dN1(x)

dx

dN2(x)
dx

· · · dNn(x)
dx

]
(3.24)

which then can be inserted into the equation above and the following is obtained

cT

{∫ L

0

BT AEBdxa −

(∫ L

0

NT b dx + NT (L)A(L)h−
∫ L

0

BT AE
d

dx
N̄1g dx

)}
= 0.

The Global stiffness matrix K and the Global load vector f can be identifiedGlobal stiffness
matrix K

Global load
vector f

from this equation as

K =
∫ L

0

BT (x)A(x)E(x)B(x)dx (3.25)

f =
∫ L

0

NT (x)b(x) dx + NT (L)A(L)h −
∫ L

0

BT (x)A(x)E(x)
d

dx
N̄1(x)g dx. (3.26)

where the matrix K is a symmetric matrix with n rows and columns and the
vector f is a column vector containing one load case.

A discrete Galerkin formulation for this 1D problem now reads
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Box:G ‘Galerkin form of 1D Linear Static Elasticity’

Find a such that

cT (Ka− f) = cT r = 0

for all choices of the vector c (the weight function)

Not necessary here, but convenient in the discussions to come is to introduce
the following general split of the global load vector f into three different load
vector contributions.

f = fd + fh − fg (3.27)

The first part fd comes from internal distributed forces and in this 1D case it is
equal to

fd =
∫ L

0

NT (x)b(x) dx (3.28)

and two other parts are from essential and natural boundary conditions on Sh

and Sg.

fh = NT (L)A(L)h (3.29)

fg =
∫ L

0

BT (x)A(x)E(x)
d

dx
N̄1(x)g dx. (3.30)

The vector fh can always be evaluated, independent from the explicit choice of
shape functions, as follows

fh = NT (L)A(L)h = A(L)h





0
...
0
1





(3.31)

and vector fg is shape function dependent. In the case with linear shape func-
tions, as discussed so far, and a constant cross section A and Young’s modulus
E, we have

fg =
∫ L

0

BT AE
d

dx
N̄1g dx =

AE

Le
1

g





−1
0
...
0





. (3.32)

where Le
1 is the length of the first element. From these expressions it is easy to

conclude that the product A(L)h and the product AEg/Le
1 are both forces.
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3.6 A Matrix Formulation

It is obvious from above that the Galerkin formulation means a scalar product
between the column vector c and another column vector r and it is still one
single equation. The vector r is called the residual and it can be interpreted as
Unbalanced residual forces.Unbalanced

residual forces From the basic idea of involving an arbitrary weight function w(x) in the weak
formulation now only remains a vector c. This vector still must be possible to
select completely arbitrary. From this requirement it is obvious that the vector
r must be equal to a zero vector

r = 0 (3.33)

which means that the structure is in equilibrium. Please observe that this fulfill-
ment of equilibrium is here said to be in a weak sense which means that we have
equilibrium measured in nodal forces!

A matrix problem consisting of n linear algebraic equations can now be iden-
tified.

Box:M ‘Matrix form of 1D Linear Static Elasticity’

Find a such that

Ka = f

where K and f are known quantities

By solving this system of equations the vector a will represent the displacements
at the nodes at equilibrium.

The very last step in the analysis is to calculate the, in the strong formu-
lation eliminated stresses and strains, by making use of the compatibility and
constitutive relations from the local equations (See box L).

ε(x) =
d

dx
(N(x)a + N̄1(x)g) = B(x)a +

dN̄1(x)
dx

g (3.34)

σ(x) = E(x)
d

dx
(N(x)a + N̄1(x)g) = E(x)(B(x)a +

dN̄1(x)
dx

g) (3.35)

This is always done in an element-by-element fashion. What now lacks is a nu-
merical procedure for establishing of the matrices K and f and solving of the
matrix problem M for the vector a. Such a numerical procedure is typically im-
plemented as a computer program which can be called a Finite Element Program.Finite Element

Program
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Remarks:

• In the beginning of this discussion there are three unknown functions of x.
These are the stress σ(x), the strain ε(x) and the displacement u(x) which
all now can be calculated at least in an approximative manner.

• Most of the mathematical work done so far is of an analytical nature and
needs only to be done once (when trying to learn and understand why the
finite element method works before it comes to use of a computer program)

• Both the matrix K and vector f are completely defined by given data in
figure 3.1, the number of shape functions Ni (elements) and the behavior
of these shape functions (the element type)

• From a mathematical point of view this discussion can be summarized as

L⇒ S⇔W ≈ G⇔M

and sources for errors in this mathematical model of reality are deviations
from reality in the constitutive and the compatibility relations, deviations
in the selected boundary conditions and numerical errors due to use of a
limited number of Finite Elements with a specific behavior in each element.

• One can show that the solution to the matrix problem M always exists and
has a unique solution if the global stiffness matrix K is non-singular. If
there exist at least one essential boundary condition which prevents rigid
body motion the stiffness matrix will be non-singular. That is the global
stiffness matrix K is positive definite and the following holds

aT Ka > 0 ∀ a 6= 0 ⇒ det(K) > 0

• In this 1D case the matrix K is symmetric with a three-diagonal population.

3.7 A 2-Node Element Stiffness Matrix

This 1D finite element analysis discussion is now approaching the end of the
analytical part of the analysis and we are close to a position where we have to
put in numbers and start the numerical part of the analysis. This is normally
performed by a computer program based on this analytical discussion. What still
has to be discussed is how to evaluate the integrals in box M. After that the
number and the behavior of shape functions Ni is decided, these integrals only
contain known given quantities and the basic question is how to evaluated these
as efficient as possible! Please observe, when it comes to practical use of a finite
element program one always has to select a certain number of finite elements of a
certain element type which means exactly the same as selecting the number and
the behavior of the shape functions Ni.
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One of the cornerstones in a finite element formulation is that the entire
domain is split into a finite number of sub-domains, so called finite elements.
Due to the nature of the shape functions as linear independent and only non-
zero over very limited parts of the entire domain it is convenient to perform the
integral over one element (one sub-domain) at a time and we have

K =
nel∑

i=1

∫ xi+1

xi

BT (x)A(x)E(x)B(x)dx (3.36)

where this is a sum of nel matrices where nel is the number of finite elements.
Each of these sub-matrices will only contain 4 non-zero coefficients symmetrically
positioned around the main-diagonal of the sub-matrix. This is because the
vector B evaluated for x-values inside the interval xi and xi+1 will only contain
2 non-zero positions and the non-zero part of the product BT B is a symmetric
2 row and 2 column matrix.

Let us now study such a sub-interval in more detail. We will now move over
to an element-local notation, see figure 3.7. The two linear parts of the global

x

1.

x
i-1

x
i

x
i+1

x
i+2

N
i
(x) N

i+1
(x)

N
1

e N
2

e

Figure 3.7: The relation between element-local and global shape functions

shape function Ni and Ni+1 over the interval from xi to xi+1 has been given the
closely related notations Ne

1 and Ne
2 which is an element-local numbering from 1

to 2 over the number of nodes associated with this element. The following new
element-local vectors can now be defined

N e(x) = [ Ne
1 (x) Ne

2 (x) ] and ae =
{

ae
1

ae
2

}
(3.37)

and be used for an element-local expression of the displacement approximation
ue(x) as follows

ue(x) = Ne
1 (x)ae

1 + Ne
2 (x)ae

2 = N e(x)ae. (3.38)

The element-local strain approximation εe(x) can now be written as

εe(x) =
due(x)

dx
=

[
dNe

1 (x)
dx

dNe
2 (x)
dx

]

︸ ︷︷ ︸
=Be

(x)

ae = Be(x)ae (3.39)
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and the global matrix B will here appear in an element-local version Be.
A relation between the global unknown vector a and the element-local un- element-local

known vector ae is easily established as

ae =
{

ae
1

ae
2

}
=

[
0 · · · 1 0 · · · 0
0 · · · 0 1 · · · 0

]

︸ ︷︷ ︸
=Ce





a1

...
ai−1

ai

...
an





= Cea (3.40)

where the matrix Ce is a Boolean Matrix populated by only unity or zero values. Boolean Matrix

Remarks:

• The element-local vector ae is always a subset of the global vector a.

• There is always one unity value in each row of the matrix Ce as long as
none of the nodes in the element belongs to the boundary Sg, where we
have known values of the displacements.

• In cases where one or several nodes are associated to the boundary Sg we
can so far think of a matrix Ce preserving its number of rows and where a
zero row without any unit value is introduced corresponding to the given
value g.

• A more thorough and deepened discussion of this topic can be found in
chapter 5 under section 5.8.

It can now be shown that the global stiffness matrix K can be built from a
sum of small 2x2 matrices which are expanded by a pre- and post-multiplication
of the boolean matrix Ce.

K =
nel∑

i=1

CeT

i

∫ xi+1

xi

BeT

(x)A(x)E(x)Be(x) dx

︸ ︷︷ ︸
=Ke

i

Ce
i (3.41)

Such a small matrix is an important and often discussed topic called the Element
Stiffness Matrix Ke. The subscript i will only be used when a specific element Element

Stiffness Matrixi is discussed.
In this analytical discussion it is now time to perform the very last analytical

steps. Let us express the two local shape functions Ne
1 and Ne

2 in an element-local
coordinate axis ξ and in accordance to the figure 3.8 and we typically have

Ne
1 (ξ) =

1
2
(1− ξ); Ne

2 (ξ) =
1
2
(1 + ξ). (3.42)
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x
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e(ξ)

ξ
-1. 1.0.

Figure 3.8: The element-local coordinate system ξ

The mapping between the two coordinate systems can be written as

x(ξ) =
1
2
(xi+1 − xi)ξ +

1
2
(xi+1 + xi). (3.43)

where the length of the element Le = (xi+1 − xi). Differentiation and the chain
rule then gives

dx =
1
2
Ledξ and

dNe
i (ξ(x))
dx

=
Ne

i (ξ)
dξ

dξ

dx
=

2
Le

Ne
i (ξ)
dξ

(3.44)

and it is easy to evaluate the Be matrix as follows

Be =
[

dNe
1

dx

dNe
2

dx

]
=

2
Le

[
dNe

1

dξ

dNe
2

dξ

]
=

1
Le

[ −1 1
]

(3.45)

where the Be matrix in this simple case is independent from the local coordinate
system. The element stiffness matrix Ke is then

Ke =
1

Le2

[ −1
1

] [ −1 1
] ∫ 1

−1

A(x)E(x)
Le

2
dξ (3.46)

and if the the cross section A(x) and the Young’s modulus E(x) are constants
with respect to x and ξ we have

Ke =
EA

Le

[
1 −1

−1 1

]
1
2

∫ 1

−1

dξ

︸ ︷︷ ︸
=2

(3.47)

which finally can be summarized in the box below.

Box: ‘1D 2-node bar element stiffness matrix’

Ke =
EA

Le

[
1 −1

−1 1

]
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This is exactly what has to be implemented and evaluated numerically in the
computer program and the end of the analytical discussion is reached at least for
this element type. Even if the cross section A(x) changes over the domain one
typically use the value of the cross section at the mid-point of the element. That
is, the the cross section is modeled as a step-wise constant function.

3.8 A 3-Node Element Stiffness Matrix

The selection of shape functions discussed so far is actually the simplest possible
with its piece-wise linear nature with a discontinuous first-order derivative.

Let us now introduce a second choice of shape functions, still with a discon-
tinuous first-order derivative, requiring a node at the mid-point of each element.
By doing so our approximation of the displacement u(x) will be enhanced by a
second-order term and the approximation will be a piece-wise parabolic polyno-
mial chain.

x

1.

x
i

x
i+2

N
1

e(ξ) N
2

e(ξ)

ξ
-1. 1.0.

N
3

e(ξ)

x
i+1

N
i
(x) N

i+2
(x)

Figure 3.9: Element local shape functions for 3-node element

In a typical element of length Le = xi+2 − xi we have now defined three
element-local shape functions in accordance to figure 3.9 and element-local dis-
placement approximation can be written as

u(ξ) = Ne
1 (ξ)ae

1 + Ne
2 (ξ)ae

2 + Ne
3 (ξ)ae

3 = N eae. (3.48)

where

N e = [ Ne
1 (ξ) Ne

2 (ξ) Ne
3 (ξ) ] =

[
ξ

2
(ξ − 1) 1− ξ2 ξ

2
(ξ + 1)

]
. (3.49)

It is now possible to evaluate the Be matrix as follows

Be =
[

dNe
1

dx

dNe
2

dx

dNe
3

dx

]
=

2
Le

[
dNe

1

dξ

dNe
2

dξ

dNe
3

dξ

]
(3.50)

where the Be matrix in this parabolic case will be dependent on the local coor-
dinate system. After introducing derivatives of the shape functions with respect
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to ξ we have

Be =
2
Le

[
ξ − 1/2 −2ξ ξ + 1/2

]
. (3.51)

The element stiffness matrix Ke will in this case be a 3x3 matrix and in a case
with constant cross section and Young’s modulus we have

Ke =
4AE

Le2

∫ 1

−1




ξ − 1/2
−2ξ

ξ + 1/2


 [

ξ − 1/2 −2ξ ξ + 1/2
] Le

2
dξ (3.52)

⇒

Ke =
2AE

Le

∫ 1

−1




(ξ − 1/2)2 −2ξ(ξ − 1/2) (ξ − 1/2)(ξ + 1/2)
4ξ2 −2ξ(ξ + 1/2)

sym. (ξ + 1/2)2


 dξ (3.53)

By solving six different integral over polynomials in ξ we end up with an element
stiffness matrix for a 1D 3-node element for second-order problems as defined in
the box below.

Box: ‘1D 3-node bar element stiffness matrix’

Ke =
EA

6Le




14 16 −2
16 32 16
−2 16 14




3.9 An Element Load Vector

According to the global load vector f , it is also possible to identify such a typical
element contribution called the Element Load Vector fe which can be evaluatedElement Load

Vector over one element interval at a time.

f =
n∑

i=1

CeT

i

∫ xi+1

xi

N eT

b(x) dx

︸ ︷︷ ︸
=f e

i

+fh − fg (3.54)

In the general case, we will find later on that element nodal loads generated
from different distributed load contributions can be integrated over the element
domain. The global load vector contributions fh and fg will be discussed further
in the next section.

Concerning the element load vector calculations from different types of dis-
tributed loads one typically restrict the variation inside the element to the vari-
ation used for the displacement approximation. That is, in our 1D case and
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focusing on the 2-node element with the distributed load/unit length b(x), we
have

b(x) = N ebe =
[

Ne
1 Ne

2

] {
be
1

be
2

}
=

1
2
(1− ξ)be

1 +
1
2
(1 + ξ)be

2 (3.55)

where the required input to the element are the intensity of the distributed load
at the two nodes, be

1 and be
2. This treatment leads to what is called a Consistent

Load Vector . This means that the load must not change more rapidly than the Consistent Load
Vectordisplacement.

Also the element load vector fe is most conveniently evaluated in a local
coordinate system ξ. Thus

fe =
∫ 1

−1

[
Ne

1 (ξ)

Ne
2 (ξ)

]
[

Ne
1 (ξ) Ne

2 (ξ)
] Le

2
dξ

{
be
1

be
2

}
(3.56)

which means integration of each coefficient in a symmetric 2x2 matrix as follows

fe =
Le

2




∫ 1

−1

Ne2

1 (ξ)dξ

∫ 1

−1

Ne
1 (ξ)Ne

2 (ξ)dξ

sym.

∫ 1

−1

Ne2

2 (ξ)dξ




{
be
1

be
2

}
. (3.57)

These three integrals are simple polynomials to integrate over a symmetric inter-
val and we receive the following numerical values

∫ 1

−1

Ne2

1 (ξ)dξ =
∫ 1

−1

Ne2

2 (ξ)dξ =
2
3

and
∫ 1

−1

Ne
1 (ξ)Ne

2 (ξ)dξ =
1
3
. (3.58)

By putting these values into the element load vector fe expression, we obtain

fe =
Le

6

[
2 1
1 2

]{
be
1

be
2

}
. (3.59)

Let us simplify this expression to a situation with a constant load intensity be
1 =

be
2 = b0, we get

fe =
b0L

e

2

{
1
1

}
(3.60)

which has the obvious physical interpretation that the total force generated by the
load intensity b0 times the element length Le is split into two equal concentrated
forces acting at the ends of the element.
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3.10 The Assembly Operation

Now all analytical details are discussed and we know what is needed for doing an
implementation of such a finite element algorithm for analysis of 1D linear static
elasticity problems in some programming language.

The overall matrix problem in boxM with the global stiffness equations Ka =
f can now be rewritten in terms of element stiffness matrices Ke

i and element
load vector contributions fe

i as follows

nel∑

i=1

CeT

i Ke
i C

e
i a =

nel∑

i=1

CeT

i fe
i + fh − fg (3.61)

and boundary condition terms fh and fg. After calculation of each element
contribution an expansion and adding of these element contributions to the global
stiffness matrix K and the global load vector f is performed. This numerical
process is called the Assembly Operation of the global stiffness equations.Assembly

Operation Here we typically only calculate and store non-zero coefficients in the upper
right part of the global stiffness matrix in the computer memory. This system
of equations can be solved by several different solution techniques such as both
direct or iterative algorithms. After such a solution procedure we have numerical
values in the global freedom vector a and the very last step in the analysis is to
calculate the strains and the stresses.

3.11 Stress and Strain Calculations

The strain and the stress calculation is, as already mentioned, performed on the
element level. By making use of equations 3.34, 3.35 and 3.40 we have

εe = Beae = BeCea and σe = Eεe. (3.62)

In the cases with the 2-node linear element the strain and the stress approxima-
tion will be rough. Because the Be matrix is constant and independent of space
the strain and the stress will receive a constant value in each element. That is,
the strain and stress approximation will be piece-wise constant over the domain
and the strain and stress field are discontinues over the element borders. This is
general also in multi-dimensional linear elasticity problems.

From a more general point of view, one important and obvious question in this
context is which points should be used to compute the stresses and the strains?
The answer is that associated to a typical element (or shape function selection)
there are always a limit number of well-defined points inside the element which
gives the most accurate strain and stress approximation. Such points are called
superconvergent points which for the 2-node element is at the center of the element
and for the 3-node element there are two superconvergent points at ξ = ±1/

√
3.
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Another important aspect possible to discuss already in this 1D context is
that these jumps in the strain and the stress approximation can be used as a
measure of the error in the numerical approximation. Such an error measure
can be utilized in a so called Adaptive finite element analysis where an iterative Adaptive finite

element analysisprocedure is used and the domain is remeshed with the error in the region form
the previous calculation as a measure for what size the elements should have in
that region of the domain.

3.12 Multi-dimensional Truss Frame Works

This finite element formulation of 1D elasticity problems discussed so far is prob-
ably not that important as a tool in the daily engineering work but it is very
important as a first application of the finite element method for getting used to
and familiar with why and how the method works.

This 1D formulation can easily be extended to multi-dimensional cases of
frame works of bars often called Truss elements. Such a truss element does not Truss elements
transmit moment at the end points and the overall reaction force in such multi-
dimensional element always acts in the direction of the element. A frame work
model with its moment-free connections is a simple, fast and powerful tool for
analysis of real frame works in a variety of different engineering structures such
as buildings, bridges, cranes and mast structures. As an analyst one has to be
careful not to introduce non-physical mechanisms because of the moment-free
connections between the members in the model of the frame work which seldom
is present in the real structure.
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Figure 3.10: 1D bar element used in a 2D situation

Let us now think of our 1D coordinate system as a local direction in a global
2D or 3D coordinate system. The displacement of a 1D bar element expressed in
a 2D global coordinate system can be written as follows

ae =
{

ae
1

ae
2

}
=

[
∆x̄ ∆ȳ 0 0
0 0 ∆x̄ ∆ȳ

]




u1

v1

u2

v2





= T 2Dae
2D (3.63)
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or in a 3D case we receive

ae =
[

∆x̄ ∆ȳ ∆z̄ 0 0 0
0 0 0 ∆x̄ ∆ȳ ∆z̄

]





u1

v1

w1

u2

v2

w2





= T 3Dae
3D (3.64)

where

∆x̄ = (x2 − x1)/Le ∆ȳ = (y2 − y1)/Le ∆z̄ = (z2 − z1)/Le

Le =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

In the text to come, we will omit the subscripts 2D and 3D and rely on a context
dependent notation where it is sufficient to drop these subscripts.

Please observe, the assumed displacement in figure 3.10 seems to be not very
general but it is. It is the elongation of the bar that is important and as long
as the rotation is small there are an infinite number of deformations ending up
in the same elongation. The rotation doesn’t influence the length of the bar in
this linear small displacement analysis. In figure 3.11 an arbitrary deformed and
rotated element is sketched with a scaled-up deformation.

x

y

u
1

v
2

v
1

u
2

A deformed element

A constant elongation

Figure 3.11: An arbitrary deformed element with a certain elongation

Let us pick up the equilibrium equation on the element level and for just one
typical 1D element we have

Keae = fe ⇔ EA

Le

[
1 −1

−1 1

]{
ae
1

ae
2

}
=

{
fe
1

fe
2

}
(3.65)

which always is two identical equations with opposite signs. The 1D element-
local displacement vector ae can be eliminated and in the 2D case we multiply
with T T

2D from the left and obtain

T T
2DKeT 2D︸ ︷︷ ︸

=Ke

2D

de
2D = T T

2Dfe (3.66)
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from which we can identify the element stiffness matrix for a 2D bar (or truss)
element as follows

Ke
2D =

EA

Le




∆x̄ 0
∆ȳ 0
0 ∆x̄
0 ∆ȳ




[
1 −1

−1 1

] [
∆x̄ ∆ȳ 0 0
0 0 ∆x̄ ∆ȳ

]
. (3.67)

After matrix multiplication we obtain

Ke
2D =

EA

Le




∆x̄2 ∆x̄∆ȳ −∆x̄2 −∆x̄∆ȳ
∆ȳ2 −∆x̄∆ȳ −∆ȳ2

∆x̄2 ∆x̄∆ȳ
sym ∆ȳ2


 . (3.68)

The 3D case is very similar as follows

Ke
3D =

EA

Le




∆x̄2 ∆x̄∆ȳ ∆x̄∆z̄ −∆x̄2 −∆x̄∆ȳ −∆x̄∆z̄
∆ȳ2 ∆ȳ∆z̄ −∆x̄∆ȳ −∆ȳ2 −∆ȳ∆z̄

∆z̄2 −∆x̄∆z̄ −∆ȳ∆z̄ −∆z̄2

∆x̄2 ∆x̄∆ȳ ∆x̄∆z̄
sym ∆ȳ2 ∆ȳ∆z̄

∆z̄2




. (3.69)

These two element stiffness matrices are implemented as they are described
above in most finite element packages such as in the TRINITAS program. When
it comes to hand calculations for purpose of understanding the theory and the
numerical work flow in a typical finite element analysis it is possible in 2D cases
to identify an angle θ (See figure 3.10) where

∆x̄ = cos θ = c ∆ȳ = sin θ = s

and the element stiffness matrix Ke
2D can be rewritten in a more ”easy to use”

form for hand calculations.

Ke
2D =

EA

Le




c2 cs −c2 −cs
s2 −cs −s2

c2 cs
sym s2


 (3.70)
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3.13 Numerical Examples

A number of numerical examples will be studied below. Results from hand cal-
culations and from computer calculations are presented.

A 1D bar problem

Consider an linear elastic bar of length L with a varying cross section A(x)

A(x) = A0

(
1− x

2L

)2

and a given Young’s modulus E. The bar is rigidly supported at the left end
and at the right a concentrated force F is applied. The cross section variation is
defined as follows

x

A(x), E F

x = Lx = 0.

Figure 3.12: The given bar geometry

The exact solution for the displacement u(x) can be achieved by solving of
the strong formulation defined in box S where the given displacement g and the
distributed force/unit length b(x) are equal to zero. Putting in the cross section
expression into the differential equation gives

d

dx

(
A0

(
1− x

2L

)2

E
du(x)

dx

)
= 0

and one integration of both sides ⇒

EA0

(
1− x

2L

)2 du(x)
dx

= C1

where C1 is a unknown constant. In the right end we have the boundary condition

EA(L)
du(L)

dx
= A(L)h = F ⇒ C1 = F.

A second integration then gives

u(x) =
2FL

EA0

1(
1− x

2L

) + C2
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where the boundary condition u(0) = 0 ⇒

C2 = −2FL

EA0

and the analytical solution for the displacement u(x) is

u(x) =

x

2L(
1− x

2L

) 2FL

EA0

and for the stress σ(x) we have

σ(x) = E
du(x)

dx
=

1(
1− x

2L

)2

F

A0
.

This expression will be used later on as a comparison.

Let us now solve this problem numerically by making use of the finite element
method. Use the following finite element mesh consisting of three 2-node 1D

x

F

x = Lx = 0.

1 32a
0

a
3

a
2a

1

x = 2L/3x = L/3

Figure 3.13: The given bar geometry

elements of equal length Le
i = L/3 where i = 1, 2, 3. Concerning the cross

section of the elements we here will use elements with a constant cross section
calculated at the center of each element from the given expression. That is,
A1 = A(x = L/6) = 121A0/144, A2 = A(x = L/2) = 81A0/144 and A3 = A(x =
5L/6) = 49A0/144 which gives the following element stiffness matrices

Ke
1 =

121EA0

48L

[
1 −1

−1 1

]
Ke

2 =
81EA0

48L

[
1 −1

−1 1

]

Ke
3 =

49EA0

48L

[
1 −1

−1 1

]
.

Before assembling the global stiffness equations Ka = f we select a global node
numbering in the unknown vector a as follows

a =





a1

a2

a3




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and the Boolean matrices Ce
i can be identified as follows

Ce
1 =

[
0 0 0
1 0 0

]
Ce

2 =
[

1 0 0
0 1 0

]
Ce

3 =
[

0 1 0
0 0 1

]
.

Rewriting of the global stiffness equation into a sum of expanded element stiffness
matrices gives

3∑

i=1

CeT

i Ke
i C

e
i a = f

and ⇒

EA0

48L






121 0 0

0 0 0
0 0 0


 +




81−81 0
−81 81 0

0 0 0


 +




0 0 0
0 49−49
0−49 49











a1

a2

a3



 =





0
0
F





which ends up in the following system to solve

EA0

48L




202 −81 0
−81 130 −49

0 −49 49








a1

a2

a3



 =





0
0
F





where the solution is

a =





a1

a2

a3



 =

1
160083

FL

EA0





63504
158368
315184



 .

Finally, we can calculate strains and stresses in the elements from

σe
i = Eεe

i = EBeae
i =

E

Le
i

[ −1 1
] {

ae
1

ae
2

}

i

which gives

σe
1 =

3E

L

[ −1 1
] FL

160083EA0

{
0

63504

}
= 63504F/53361A0

σe
2 =

3E

L

[ −1 1
] FL

160083EA0

{
63504
158368

}
= 94864F/53361A0

σe
3 =

3E

L

[ −1 1
] FL

160083EA0

{
158368
315184

}
= 158816F/53361A0.

Please note that both the strain and the stress approximations inside this element
type are constant. If we move over to 3-node element a piece-wise linear variation
would be obtained.
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Let us now put in the numerical values L = 1.0 m, F = 10000. N, E = 2.0·1011

Pa and A0 = 0.01 m2 which generates the following numerical results

a1 ' 0.1983 · 10−5 m a2 ' 0.4946 · 10−5 m a3 ' 0.9844 · 10−5 m

σ1 ' 0.1190 · 107 Pa σ2 ' 0.1778 · 107 Pa σ3 ' 0.2939 · 107 Pa

and the analytical results are

u(L/3) = 0.2 · 10−5 m u(2L/3) = 0.5 · 10−5 m u(L) = 1.0 · 10−5 m

σ(L/6) = 0.1190 ·107Pa σ(L/2) = 0.1778 ·107Pa σ(5L/6) = 0.2939 ·107Pa

The same analysis has been done by the TRINITAS program and results are
shown in figure 3.14 below. All freedom perpendicular to the bar have been fixed
because there is no 1D bar element implemented in the program.

Displacement

Length     =

x-comp.  =

y-comp.   =

0.9844E - 05

0.9844E - 05

0.

Axial Stress =  0.2939E+07

Figure 3.14: A TRINITAS analysis

Remarks:

• The approximation of the displacement always gives the best agreement at
the nodes. In this case we have a relative error about one percent.

• A comparison of the stresses at the center of the element show an exact
agreement. It can be shown that this is not just luck in this case and that
this always holds for exactly this type problem. In the general case one
should conclude that the stresses are less accurately approximated com-
pared to the displacements.

• The stress field is in the general case always discontinuous at the element
borders and no equilibrium equation in stress is fulfilled at element bound-
aries.
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A 2D truss problem

In this example we will focus on a simple truss frame work consisting of three
bar members with moment-free connections. This problem will be numerically
analyzed by hand calculations in accordance to the finite element method. The

x

y

E, A, L E, A, L

E, A, L

P

Figure 3.15: A 2D truss problem

frame work is modeled by three 2D bar elements and the global numbering of
freedoms and elements are done in accordance to figure 3.16. The contents of

P

u
1

v
1

v
2

v
3

u
3

u
2

1 2

3

Figure 3.16: A 2D finite element mesh

the global freedom vector a can be established from this finite element mesh
numbering. We have

a =





u2

v2

u3




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where the sequence in-between the unknowns is selected by the analyst and the
selection will influence the appearance but not result of the entire analysis.

The element stiffness matrices Ke
i can be established from equation 3.70

Ke
1 =

EA

4L




1
√

3 −1 −√3
3 −√3 −3

1
√

3
3


 Ke

2 =
EA

4L




1 −√3 −1
√

3
3

√
3 −3
1 −√3

3




Ke
3 =

EA

L




1 0 −1 0
0 0 0

1 0
0




and the Boolean matrices are

Ce
1 =




0 0 0
0 0 0
1 0 0
0 1 0


 Ce

2 =




1 0 0
0 0 0
0 1 0
0 0 1


 Ce

3 =




0 0 0
0 0 0
0 0 1
0 0 0


 .

We are now ready to establish the global stiffness equation as a sum of expanded
element stiffness matrices and we obtain as an intermediate result

3∑

i=1

CeT

i Ke
i C

e
i a = f

⇒

EA

4L







1
√

3 0√
3 3 0
0 0 0


 +




1 −√3 −1
−√3 3

√
3

−1
√

3 1


 +




0 0 0
0 0 0
0 0 4











u2

v2

u3



 =





F
0
0





and the final system to solve then reads

EA

4L




2 0 −1
0 6

√
3

−1
√

3 5








u2

v2

v3



 =





F
0
0





which has the following solution.

a =





u2

v2

u3



 =

FL

4EA





9
−1/

√
3

2





The axial stress in each of the bar elements can be calculated from

σe
i = EBeae

i = EBeT idi =
E

Le
i

[ −1 1
] [

∆x̄ ∆ȳ 0 0
0 0 ∆x̄ ∆ȳ

]

i





ue
1

ve
1

ue
2

ve
2





i
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⇒

σe
i =

E

Le
i

[ −∆x̄ −∆ȳ ∆x̄ ∆ȳ
]
i





ue
1

ve
1

ue
2

ve
2





i

which gives for the three different elements used in this analysis.

σe
1 =

F

8A

[ −1 −√3 1
√

3
]




0
0
9

−1/
√

3





=
F

A

σe
2 =

F

8A

[
1 −√3 −1

√
3

]




2
0
9

−1/
√

3





= −F

A

σe
3 =

F

4A

[ −1 0 1 0
]




0
0
2
0





=
F

2A

A numerical analysis of this problem has also been done by the finite element
program TRINITAS. Used numerical values are

F = 10 000. N, L = 1.0 m, E = 2.0 · 1011 Pa, A = 0.001 m2

and the results are shown in figure 3.17

Axial Stress =  0.1000E+08
Displacement

Length     =

x-comp.  =

y-comp.   =

 0.0001127

 0.0001125

-0.7217E-05

Axial Stress =  -0.1000E+08

Figure 3.17: A TRINITAS 2D truss analysis
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A 3D truss problem

Consider the following simple 3D truss frame work analyzed by the TRINITAS
programs. The mesh consists of 4 nodes in 6 planes which means 24 nodes and
5(12 + 6) = 90 2-node 3D truss elements. All elements have a cross sectional
area A = .0005 m2 and a Young’s modulus E = 0.2 · 1011Pa. The applied load is
a concentrated force vector P = {10000. 20000. 0. }T N . The geometrical
positions of the nodes and some results are shown in figure 3.18. The geometry
is defined by the distances ax = ay = az = 0.4 m. All 4 nodes at the bottom are
fully fixed in all directions.

a
x

a
y

a
z

P

Displacement

Length     =

x-comp.  =

y-comp.  =

z-comp.  =

 0.003337

 0.001389

 0.002973

-0.0006044

Axial Stress =  0.1058E+09

x

y

z

Figure 3.18: A TRINITAS 3D truss analysis
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3.14 Common Pitfalls and Mistakes

As already mentioned rigid body motion always have to be prevented. That is
at least one fixed or prescribed freedom in 1D problems, 3 fixed or prescribed
freedoms in 2D cases or 6 fixed or prescribed freedoms in 3D cases have to
be present. Please be very careful when it comes to suppressing of the rigid
body rotations especially in 3D cases because it can actually be rather tricky.
Besides these necessities to prevent rigid body motion due to the uniqueness of
the solution a couple of common pitfalls will be discussed below.

Let us start the discussion by considering a mistake often made when applying
symmetric boundary conditions. Figure 3.19 shows a symmetric 2D truss.

Complete model

Singular model Correct symmetric model

Symmetry

   plane

Figure 3.19: A 2D symmetric truss problem

The conclusion from this is that a single element can never be left without
support in both ends. The lower-left element in the singular model above is free
to rotate because the moment-free connection at the right end and the boundary
condition at the left end which makes it possible to move freely in the vertical
direction without generating any strain the element. From an intuitive point of
view most engineers have a feeling that the element will stiffen because it will
be longer but this effect is a non-linear effect approximated away and not taken
into account in our linear compatibility relation.

Another closely related problem is mechanisms due to too few diagonal mem-
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bers in the structure. A simple 2D bridge-like structure will serve as an example.

A singular bridge model

A nonsingular bridge model

Figure 3.20: A 2D mechanism problem

The conclusion is that it is not necessary to put in diagonal members every-
where in the model. It is enough to prevent all overall possible mechanisms in
the structure.

In 3D cases both those two types of problems discussed in the 2D problems
above will be ever more frequent. As a very last example we discuss the the 3D
case studied in the previous example. Think of a case where we also put in a node
in the crossing point of each pair of diagonal members in the original structure.
In this case each of these diagonal members will be split into two truss element
and the model will be singular. The reason is that all these new extra nodes
will not have any stiffness in a direction perpendicular to the plane spanned by
the neighboring elements. This can easily be cured by just putting in a fixed
boundary condition in the appropriate direction.

Generally one can conclude that use of truss frame work models, especially in
3D, requires a thorough understanding of what such a model with its moment-
free connections means and how this property, which in most cases deviates from
reality, effects the analysis. In many 3D cases it is often easier to create a beam
model of the frame work but this is more time-consuming to solve compared
to a bar model and it is often possible to draw the same overall engineering
conclusions from the faster bar model.
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3.15 Summary

In every plane in a 1D bar we have three unknowns and three local equations

Box:L ‘Local Equations in 1D Linear Static Elasticity’

d

dx
(A(x)σ(x)) + b(x) = 0

σ(x) = E(x)ε(x)

ε(x) =
du(x)

dx

to fulfill. These equations can be turned over to a well-posed strong formulation
by elimination of the strain and the stress and imposing of boundary conditions.

Box: S ‘Strong form of 1D Linear Static Elasticity’

Given b(x), h and g. Findu(x) such that

d

dx

(
A(x)E(x)

du(x)
dx

)
+ b(x) = 0 ∀ x ∈ Ω

u(0) = g on Sg

E(L)
du(L)

dx
= h on Sh

An equivalent weak form can be achieved by introduction of a weight function
and after one partial integration we have

Box:W ‘Weak form of 1D Linear Static Elasticity’

Given b(x), h and g. Findu(x) such that
∫ L

0

dw(x)
dx

A(x)E(x)
du(x)

dx
dx =

∫ L

0

w(x)b(x) dx + w(L)A(L)h

u(0) = g on Sg

for all choices of weight functions w(x) which belongs to the set V

where the natural boundary conditions are implicitly contained. By introducing
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that the test functions and the weight functions are selected equally we end up
in the following discrete Galerkin formulation.

Box:G ‘Galerkin form of 1D Linear Static Elasticity’

Find a such that

cT (Ka− f) = cT r = 0

for all choices of the vector c(the weight function) where

K =
∫ L

0

BT (x)A(x)E(x)B(x)dx

f =
∫ L

0

NT (x)b(x) dx + NT (L)A(L)h−
∫ L

0

BT (x)AE
dN̄1(x)

dx
g dx.

This is still only one single equation where now the essential boundary conditions
are implicitly contained. Because of the arbitrariness of the vector c which implies
that the residual r must be equal to zero the following system of linear algebraic
equations is obtained.

Box:M ‘Matrix form of 1D Linear Static Elasticity’

Find a such that

Ka = f

where K and f are known quantities

K =
nel∑

i=1

CeT

i Ke
i C

e
i Ke

i =
∫ xi+1

xi

BeT

(x)A(x)E(x)Be(x) dx

f =
nel∑

i=1

CeT

i fe
i + fh − fg fe

i =
∫ xi+1

xi

N eT

(x)b(x) dx

The numerical procedure starts from here and the following work flow can be
identified.

Numerical Work Flow:

• Split the entire domain into a number of Finite Elements of a certain type

• Define domain properties such as the Young’s modulus E and the cross
section A in the elements

• Define essential boundary conditions such as fixed or prescribed node dis-
placements
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• Define natural boundary condition as given concentrated or distributed
loads

• Make a global numbering sequence of all involved unknown freedoms (Nor-
mally done automatically by the program)

• Calculate all element stiffness matrices Ke
i and expand and add those stiff-

ness coefficients into the appropriate positions in the global stiffness matrix
K

• Calculate all element load vectors fe
i and expand and add those load con-

tributions into the appropriate positions in the global load vector f

• Solve the system of linear algebraic equation Ka = f by some Gauss’
elimination or LR-factorization look-a-like procedure. (Further discussions
concerning how to calculate the unknown vector a will be given later on in
the chapters to come)

• Pick up the element freedom vector ae
i from the global one a for one element

at the time and calculate the strains and the stresses

• Investigate the results, hopefully in terms of a nice color picture showing
the deformed structure with the stress levels in color, and try to examine
the relevance of the achieved approximation.

In most finite element analyses, after the results have been accepted from an
overall engineering point of view, one also have to accept the analysis from a
numerical point of view which normally means a refinement of the mesh in some
critical part of the domain trying to find out if the accuracy of the numerical
results is sufficient.

At this very end, one should not forget that the reason for doing the finite
element analysis was some overall engineering question concerning how to design
a certain piece of equipment and the finite element analysis only gives some hints
concerning the size of displacements, strains and stresses in a model of reality.



Chapter 4
Beams

Let us now once again consider a straight slender body with a minor changing
cross section A(x) and area moment of inertia I(x). Observe, that the geometry
of this structure may be the same as the one we studied in the previous bar
problem. But in this case, we no more restrict all loads to only act in the local
x-direction. Here we will instead consider a distributed load q(x) per unit length
[N/m] acting perpendicular to the local direction x and an important unknown
is the displacement v(x) in the local y-direction.

x
I(x), E(x)

q(x)

y,   v(x)

Figure 4.1: A typical beam structure

Independent from the boundary conditions we will introduce later it will have
to carry the load q(x) by bending. That is, the bar displacement assumption is
no more applicable and in this case we have to turn over to a displacement
assumption which gives the structure some extended possibility to deform.

45
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4.1 The Beam Displacement Assumption

Let us focus on a plane perpendicular to the x-axis and assume that this plane
will remain flat. We now also give this plane the possibility to undergo both
rotation and translation in the xy-plane as shown in figure 4.2. This is the so
called Beam displacement assumption. This discussion will be limited to planeBeam

displacement
assumption

bending. That is the load q(x) and displacement v(x) will remain in the xy-
plane. Note that this also requires a cross section which is symmetric around
the z-axis. To include a general 3D deformation of a beam is straight forward as

Undeformed body

Deformed body

u(x,0)

v(x)

θ(x)

A

A

y

y

Mean surface
x

y

Figure 4.2: A typical beam deformation

long as the shear center and the center of gravity of the cross section coincide.
The Mean surface is the plane which is exposed to neither tensile stresses norMean surface
to compressive stresses, if the beam carries a bending moment only. This also
means that the fibers in this surface will keep its initial length and the strain is
equal to zero. This mean surface plane always coincide with the xz-plane in the
coordinate system.

4.2 The Local Equations

An expression for the horizontal displacement u(x, y) in a general position A in
a beam subjected to general loadings can be defined by the value of the y-axis
and the slope of the deformed mean surface of the beam.

u(x, y) = u(x, 0)− y
dv(x)
dx

(4.1)

This approximation is valid as long as θ is small (say less than 1 degree) and we
have θ ' dv(x)/dx. Calculation of the normal strain in the local x-direction εx

from this displacement assumption is straight forward.

εx(x, y) =
∂u(x, y)

∂x
=

du(x, 0)
dx

− y
d 2v(x)

dx2
(4.2)
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This is the compatibility relation in this Euler-Bernoulli beam theory displace-
ment assumption. The physical interpretation of the first term is the strain
generated by an axial force N carried by the beam.

As a constitutive relation we still use a linear elastic material and Hooke’s 1D
law applies. One can conclude from this that the stress σx and strain εx both
varies as linear functions with respect to the y-direction.

σx(x, y) = E(x)εx(x, y) (4.3)

For a balance law we once again use static equilibrium. First, the relationship
between the bending moment M(x) and the stress σx(x, y), and the normal force
N(x) and the stress σx(x, y) is established. From figure 4.3 we have for the

x

y

z

σ
x
(x,y)

Cross section A(x)

dA=dydz

Figure 4.3: A single symmetric beam cross section

bending moment M(x)

M(x) =
∫

A(x)

yσxdA =
∫∫

A(x)

yσxdydz (4.4)

and for the axial normal force N(x)

N(x) =
∫

A(x)

σxdA =
∫∫

A(x)

σxdydz. (4.5)

Elimination of the stress and the strain by putting equations 4.3 and 4.2 into the
equations 4.4 and 4.5 gives the following two equations

M(x) = E(x)
du(x, 0)

dx

∫∫

A(x)

ydydz

︸ ︷︷ ︸
=S(x)=0

−E(x)
d 2v(x)

dx2

∫∫

A(x)

y2dydz

︸ ︷︷ ︸
=I(x)

(4.6)

and



48 4.2. THE LOCAL EQUATIONS

N(x) =

=N(x)︷ ︸︸ ︷
E(x)

du(x, 0)
dx

∫∫

A(x)

dydz

︸ ︷︷ ︸
=A(x)

−d 2v(x)
dx2

∫∫

A(x)

ydydz

︸ ︷︷ ︸
=S(x)=0

(4.7)

From this we can draw several important conclusions. First, we introduce the
following closely related geometrical definitions for the cross section of the beam.

A(x) =
∫∫

A(x)

dydz; S(x) =
∫∫

A(x)

ydydz; I(x) =
∫∫

A(x)

y2dydz (4.8)

These are the cross section A(x), the first moment (statical moment) S(x) and
the area moment of inertia I(x). Further on, we find that S(x) must be equal to
zero when this integral is taken over the entire cross section. The reason is that
the mean surface of the beam always coincide with the center of gravity for the
cross section. From equation 4.9 we then obtain

M(x) = −E(x)I(x)
d 2v(x)

dx2
(4.9)

which means that the bending moment is proportional to the curvature κ '
d 2v(x)/dx2 of the beam for small displacements.

Concerning the bending stress σx(x, y) in the beam an useful equation is
received by putting equation 4.2 and 4.9 into equation 4.3

σx(x, y) =
N(x)
A(x)

+
M(x)y
I(x)

(4.10)

Let us now study equilibrium for a short slice ∆x of a generally loaded beam
where vertical force and moment equilibrium equations give us

x

q(x)

y

N(x) N(x+Δx)

M(x+Δx)M(x)

T(x+Δx)T(x)

Δx

Figure 4.4: Forces and moments acting on a slice ∆x of the beam
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↑ T (x + ∆x)− T (x) + q(x)∆x = 0 (4.11)

y M(x + ∆x)−M(x) + T∆x + q(x)∆x
∆x

2
= 0. (4.12)

These equations can be simplified by use of Taylor’s formula, thus

T (x + ∆x) ≈ T (x) +
dT (x)

dx
∆x (4.13)

M(x + ∆x) ≈ M(x) +
dM(x)

dx
∆x. (4.14)

Putting the equations 4.13 and 4.14 into equations 4.11 and 4.12 and letting ∆x
go to zero gives the following general equilibrium equations.

dT (x)
dx

= −q(x) (4.15)

dM(x)
dx

= T (x) (4.16)

By putting equations 4.9 and 4.15 into a derivative with respect to x of equation
4.16 we have eliminated both the bending moment M(x) and the shear force
T (x) and we will end up with the well known

d 2

dx2

(
E(x)I(x)

d 2v(x)
dx2

)
= q(x) (4.17)

Elastic curve differential equation. This is a fourth-order differential equation in Elastic curve
the transversal displacement v(x) which is perpendicular to the mean surface of
the beam.

In order to be able to solve this equation we need to apply boundary con-
ditions. Four different boundary conditions, two at each end of the beam are
required.

4.3 A Strong Formulation

After having a known set of boundary conditions it is possible to establish a
well-posed strong formulation of this beam deflection problem. A large variety
of the different combinations of boundary conditions are possible at least if we
also include statically indeterminate beams into the discussion. When it comes
to statically determinate systems there are mainly two different combinations.
One can have a moment-free support at both ends or a rigid support at one end
and the other end free.

Here we will use this very last case as an example for the discussion. That
is, the boundary conditions are a known displacement v(0) = g1 and a known
rotation dv(0)/dx = g2 at the left end and a given moment M(L) = M0 = h1
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and a given vertical concentrated force T (L) = T0 = h2 acting in the right end.
The left end of the interval will be given the notation Sg and the right end will
be called Sh.

These four boundary conditions and the Elastic curve differential equation
constitutes a well-posed fourth-order Boundary-Value problem S.

Box: S ‘Strong form for an Euler-Bernoulli Beam’

Given q(x), h1, h2, g1 and g2. Findv(x) such that

d 2

dx2

(
E(x)I(x)

d 2v(x)
dx2

)
− q(x) = 0 ∀ x ∈ Ω = ]0, L[

v(0) = g1 on Sg −E(L)I(L)
d 2v(L)

dx2
= h1 on Sh

dv(0)
dx

= g2 on Sg − d

dx

(
E(L)I(L)

d 2v(L)
dx2

)
= h2 on Sh

Remarks:

• This formulation S is a Strong formulation of a linear static 1D Beam
deflection problem and from a mathematical point of view this is a 1D
fourth-order mixed Boundary Value Problem.Boundary Value

Problem • v(0) = g1 and dv(0)/dx = g2 are Essential boundary conditions. If g1 6= 0
Essential or g2 6= 0 the boundary condition is a non-homogeneous one.

• The total surface S consists in this 1D case only of the two end cross sections
Sh and Sg.

• h1 = M0 and h2 = T0 are Natural boundary conditions.Natural

• The boundary value problem is mixed because there are both essential
and natural boundary conditions. Later on we will be aware of that some
essential boundary conditions always have to exist to be able to guarantee
the uniqueness of the solution of the matrix problem M.

4.4 A Weak Formulation

This Strong formulation can always be transferred into an equivalent Weak for-
mulation by multiplication of an arbitrary Weight function w(x) and integrationWeight function
over the domain Ω.

∫ L

0

w(x)
(

d 2

dx2

(
E(x)I(x)

d 2v(x)
dx2

)
− q(x)

)
dx = 0 (4.18)
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After partial integration of the first term we obtain
[
w

d

dx

(
EI

d 2v

dx2

)]L

0

−
∫ L

0

dw

dx

d

dx

(
EI

d 2v

dx2

)
dx−

∫ L

0

wqdx = 0 (4.19)

and after a second partial integration of this first term
[
w

d

dx

(
EI

d 2v

dx2

)]L

0

−
[
dw

dx
EI

d 2v

dx2

]L

0

+
∫ L

0

d 2w

dx2
EI

d 2v

dx2
dx −

∫ L

0

wqdx = 0. (4.20)

Let us now introduction some specific requirements on the choice of weight func-
tions w(x). Make the choice from an infinite set V of functions where all members
wi(x) must explore the following properties

V = {wi(·)|wi(·) = 0, w′i(·) = 0 on Sg} (4.21)

where w′i(x) = dw(x)/dx. By this restriction on the weight function two of six
terms in equation 4.20 above will vanish and the following Weak formulation is
summarized in box W below.

Box:W ‘Weak form for an Euler-Bernoulli Beam’

Given q(x), T0, M0, g1 and g2. Findv(x) such that
∫ L

0

d 2w(x)
dx2

E(x)I(x)
d 2v(x)

dx2
dx =

∫ L

0

w(x)q(x) dx + w(L)T0 − dw(L)
dx

M0

v(0) = g1
dv(0)
dx

= g2

Remarks:

• This weak formulation W will serve a base for applying a weighted residual
method such as the Galerkin method.

• Two times partial integration is performed because that opens a possibility
to later on end up in a symmetric system linear algebraic equations that is
more efficiently solved in the computer compared to a non-symmetric one.
It always reduces the requirements on regularity of the approximation of
the unknown function v(x).

• The natural boundary condition is implicitly contained in the integral equa-
tion.

• It can be shown that the Strong and the Weak formulations are equivalent.
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4.5 A Galerkin Formulation

In all Weighted Residual Methods the approximation of the unknown function, in
this case v(x), is built up from a sum of test ti functions and a known function
t0 taking care of non-homogeneous essential boundary conditions.

v(x) ≈ vh(x) = t1(x)a1 + . . . + tn(x)an + t0(x) =
n∑

i=1

tiai + t0(x) (4.22)

The weight function w(x) can also be built up as sum of functions φi as follows

w(x) = φ1(x)c1 + φ2(x)c2 + . . . + φn(x)cn =
n∑

i=1

φici (4.23)

What is typical to a Galerkin formulation is, as we already have seen, that
both the approximation and the weight function are composed from the same set
of functions, so called Shape functions Ni where all Ni’s belong to the set V.Shape functions

ti(x) = φi(x) = Ni(x) (4.24)

where

V = {Ni(·)|Ni(·) = 0, N ′
i(·) = 0 on Sg} (4.25)

A discrete Galerkin finite element formulation for beams can now be based
on the following basic expressions

v(x) = N(x)a + N̄1(x)g1 + N̄2(x)g2 (4.26)

w(x) = N(x)c or equivalently w(x) = cT NT (x) (4.27)

where

N(x) =
[

N1(x) N2(x) . . . Nn(x)
]
, a =




a1

a2

...
an


 , c =




c1

c2

...
cn


 . (4.28)

The functions N̄1 and N̄2 are not shape functions taking part in the overall
approximation of the solution. These functions are only needed for taking care
of non-homogeneous essential boundary conditions. That is, g1 6= 0 and g2 6= 0
and in cases where both these known values are equal to zero we can drop the
two last terms. Later on we will se that the functions N̄1 and N̄2 will be closely
related to the choice of shape functions Ni. But we require that these functions
fulfill the following basic properties.

N̄1(0) = 1 ,
dN̄1(0)

dx
= 0 and N̄2(0) = 0 ,

dN̄2(0)
dx

= 1 (4.29)

By putting this restrictions to these functions they are independent to each other
and N̄2 doesn’t influence the approximation and N̄1 doesn’t influence the first
derivative of the approximation vh(x).
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Remarks:

• From the Weak formulation, after two times partial integration, we can
conclude that both the test function and the weight function must fulfill
the basic requirement that

∫ L

0

d2w(x)
dx2

d2v(x)
dx2

dx < ∞ ⇒ Ni ∈ C1 (4.30)

where the set C1 is all functions with at least a continuous first-order
derivative.

• This means that a useful approximation of the beam deflection must have
a continuous first-order derivative over the element borders. All Hermitian Hermitian
polynomial expressions have this property.

Before we proceed by putting equations 4.26 and 4.27 into box W we pick up
the opportunity to define the B matrix as follows

d2v(x)
dx2

=
[

d2N1(x)
dx2

· · · d2Nn(x)
dx2

]

︸ ︷︷ ︸
=B

a +
d2N̄1(x)

dx2
g1 +

d2N̄2(x)
dx2

g2 =

Ba +
d2N̄1(x)

dx2
g1 +

d2N̄2(x)
dx2

g2 (4.31)

d2w(x)
dx2

= cT BT (x) (4.32)

and we obtain the following discrete Galerkin formulation for beam problems.

Box:G ‘Galerkin form of an Euler-Bernoulli Beam’

Find a such that

cT (Ka− f) = cT r = 0

for all choices of the vector c (the weight function)

where the global stiffness matrix K and the global load vector f are identified
as follows

K =
∫ L

0

BT (x)E(x)I(x)B(x) dx (4.33)
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f =

=fd︷ ︸︸ ︷∫ L

0

NT (x)q(x) dx +

=fh︷ ︸︸ ︷
NT (L)T0 − dNT (L)

dx
M0

−
∫ L

0

BT (x)E(x)I(x)
(

d2N̄1(x)
dx2

g1 +
d2N̄2(x)

dx2
g2

)
dx

︸ ︷︷ ︸
=f g

= fd + fh − fg

(4.34)

4.6 A Matrix Formulation

Once again the conclusion from the Galerkin formulation is that for all choices of
the vector c the scalar product with the unbalanced residual force vector r must
be equal to zero.

cT r = 0 ⇒ r = Ka− f = 0 (4.35)

The only solution to this is that the force vector r is equal to a zero vector
which means that equilibrium is achieved, measured at the nodal forces.

A matrix problem consisting of n linear algebraic equations can now be es-
tablished.

Box:M ‘Matrix form of an Euler-Bernoulli Beam’

Find a such that

Ka = f

where K and f are known quantities

Remarks:

• Concerning the global freedom vector a in this beam formulation it will, as
we will understand from the next section, not only contain nodal displace-
ments. It also includes the nodal rotations.nodal rotations

• After the number of elements and the nature of shape functions Ni has been
decided it is straight forward to calculate both the matrix K and vector f

• From a mathematical point of view, and exactly as in the bar formulation,
this discussion can be summarized as

L⇒ S⇔W ≈ G⇔M
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. Sources for errors in this mathematical model of reality are deviations
from reality in the constitutive and the compatibility relations, deviations
in the selected boundary conditions and numerical errors due to use of a
limited number of Finite Elements with a specific behavior in each element.

• One can show that the solution to the matrix problem M always exists
and has a unique solution if the global stiffness matrix K is non-singular.
In this beam formulation we have to prevent rigid body motions such as
translation in the y-direction and rotation around the y-axis. By doing so
the global stiffness matrix K is positive definite and the following holds

aT Ka > 0 ∀ a 6= 0 ⇒ det(K) > 0

Later on we will add axial stiffness from our 1D bar to this beam. Such an
element will have 6 degrees of freedoms and this element is a complete 2D
frame element. This means that we have to prevent rigid body motion in
the global x-direction.

• In this 1D beam case the matrix K is symmetric with a close to diagonal
population with a bandwidth of 4.

4.7 A 2D 2-node Beam Element

It is now time to try to find out what is the nature and the behavior of shape
functions fulfilling what is required and postulated so far in this discussion. On
the element level we have to be able to identify shape functions Ne

i and free-
doms ae

i associated to the nodes describing an approximation for the transversal
displacements

ve = Ne
1ae

1 + . . . + Ne
mae

m =
[

Ne
1 . . . Ne

m

]




ae
1
...

ae
m





= Neae (4.36)

where m is the total number of freedoms associated to one element. In the
example to come we will very soon realize that m = 4. As we already have
discussed, a proper shape function choice must belong to the set of functions C1,
which consists of all functions with continuous first-order derivative.

From this the conclusion is that for each element we have to consider the
translation in the y-direction and the slope at both ends of the element. In figure
4.5 an element with four freedoms is sketched. The element length Le can be
expressed in the element coordinates Le = xi+1−xi. Let us now move focus over
to a cubic polynomial expression such as

v(x) = α1 + α2x + α3x
2 + α4x

3 (4.37)
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Figure 4.5: A 2-node beam element freedom set

which has four unknown constants α1 to α4. These constants can always be
eliminated and expressed in the element freedom vector

ae =





ve
1

θe
1

ve
2

θe
2





. (4.38)

By performing the following steps it will be possible to establish all the element-
local shape functions Ne

1 to Ne
4 by identifications. Let us start with just rewriting

equation 4.37 in a matrix notation, as follows

ve(x) =
[

1 x x2 x3
]




α1

α2

α3

α4





= F (x)α (4.39)

and the slope dve(x)/dx of the beam is

θ(x) ' dve(x)
dx

=
[

0 1 2x 3x2
]




α1

α2

α3

α4





(4.40)

which also is the angle of rotation θ(x) for small angles. Let us now due to
simplicity think of an element with its left end at xi = 0 and the right end at
xi+1 = Le. By use of equations 4.39 and 4.40 for both ends the following four
equations are obtained

ae =





v1

θ1

v2

θ2





=




1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2








α1

α2

α3

α4





= Aα (4.41)

and we now have a relationship between the element freedom vector ae and
the unknown constants in the vector α. If the inverse A−1 exists it is straight
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forward to eliminate vector α in-between equation 4.39 and equation 4.41 written
as α = A−1ae which gives

ve(x) = F (x)α = F (x)A−1ae (4.42)

and by comparing with equation 4.36 the element-local shape functions N e can
be identified as

N e(x) = F (x)A−1. (4.43)

After establishing the inverse A−1 the following

N e(x) =
[

1 x x2 x3
]



1 0 0 0
0 1 0 0

−3/Le2 −2/Le 3/Le2 −1/Le

2/Le3
1/Le2 −2/Le3

1/Le2


 (4.44)

multiplication will end up in the four element-local shape functions

N e(x) =
[

Ne
1 (x) Ne

2 (x) Ne
3 (x) Ne

4 (x)
]

(4.45)

where

Ne
1 (x) = 1− 3x2/Le2

+ 2x3/Le3

Ne
2 (x) = x− 2x2/Le + x3/Le2

Ne
3 (x) = 3x2/Le2 − 2x3/Le3

Ne
4 (x) = x3/Le2 − x2/Le

(4.46)

which all are cubic expressions in x. In figure 4.6 these four shape functions are
drawn. By putting equation 4.45 and 4.38 into 4.36 we obtain

x

N
i
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x
1
= 0 x

2
= Le

1.0

N
2
(x)

N
4
(x)

N
3
(x)N

1
(x)
e e

e

e

e

Figure 4.6: The element-local beam shape functions Ne
1 (x) to Ne

4 (x)

ve(x) = N e(x)ae = Ne
1 (x)ve

1 + Ne
2 (x)θe

1 + Ne
3 (x)ve

2 + Ne
4 (x)θe

2 (4.47)
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from which we can conclude that the displacement ve at the nodes are unaffected
by the value of the rotation. Concerning the slope or the rotation at the nodes
we have in a similar fashion that the value of the displacement doesn’t influence
the rotation. This is exactly the property one should expect from a Hermitian
polynomial approximation. This can be summarized as

Ne
1 (x1) = Ne

3 (x2) =
dNe

2 (x1)
dx

=
dNe

4 (x2)
dx

= 1

dNe
1 (x1)
dx

=
dNe

3 (x2)
dx

= Ne
2 (x1) = Ne

4 (x2) = 0

(4.48)

and the general conclusion is that the approximation of the displacement and the
rotation at the nodes are uncoupled.

From equation 4.31 we can calculate the element-local Be matrix

Be(x) =
[

d2Ne
1 (x)

dx2

d2Ne
2 (x)

dx2

d2Ne
3 (x)

dx2

d2Ne
4 (x)

dx2

]
(4.49)

where

d2Ne
1 (x)

dx2
= Be

1(x) = −6/Le2
+ 12x/Le3

d2Ne
2 (x)

dx2
= Be

2(x) = −4/Le + 6x/Le2

d2Ne
3 (x)

dx2
= Be

3(x) = 6/Le2 − 12x/Le3
= −Be

1

d2Ne
4 (x)

dx2
= Be

4(x) = 6x/Le2 − 2/Le

(4.50)

which, as expected, all are linear functions in x. Now it is time to calculate the
element stiffness matrix Ke and for a case with constant cross section properties
we have

Ke =
∫ Le

0

BeT

(x)EIBe(x)dx =

EI

∫ Le

0




Be
1

Be
2

Be
3

Be
4




[
Be

1 Be
2 Be

3 Be
4

]
dx. (4.51)

Expanding the integral into each position of the matrix product BeT

Be only six
different unique integrals are identified. This is because of the symmetry and
use of the relation Be

1 = −Be
3. Each of these integrals means integration of a
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second-order polynomial expression in x.

Ke = EI




∫ Le

0
Be2

1 dx
∫ Le

0
Be

1B
e
2dx − ∫ Le

0
Be2

1 dx
∫ Le

0
Be

1B
e
4dx

∫ Le

0
Be2

2 dx − ∫ Le

0
Be

1B
e
2dx

∫ Le

0
Be

2B
e
4dx

∫ Le

0
Be2

1 dx − ∫ Le

0
Be

1B
e
4dx

sym
∫ Le

0
Be2

4 dx




(4.52)

Let us look into details concerning only the first one which is

Ke
11 = EI

∫ Le

0

Be2

1 dx = EI

∫ Le

0

(
− 6

Le2 +
12x

Le3

)2

dx =

EI

[
48x3

Le6 +
26x

Le4 −
72x2

Le5

]Le

0

= 12
EI

Le3 (4.53)

and all the others are achieved similarly. The final result is the following 2D
2-node 4-freedom beam element. This element is useless as an element to be
used in beam frame works because it do not resist any axial forces.

Box: ‘2D beam element for transversal displacements only’

Ke =
EI

Le3




12 6Le −12 6Le

4Le2 −6Le 2Le2

12 −6Le

sym 4Le2




This element is seldom implemented in commercial programs because it is only
of academic interest to be used during hand calculations.

4.8 An Element Load Vector

The global load vector f has been split into 3 different parts

f = fd + fh − fg (4.54)

where the part fd consists of contributions from the distributed load q(x) which
has to be evaluated at the element level and is given as follows

fd =
n∑

i=1

CeT

i

∫ xi+1

xi

N eT

(x)q(x) dx

︸ ︷︷ ︸
=f e

i

. (4.55)
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where CeT

i is a Boolean matrix. This matrix defines to which global freedom each
of the element-local freedoms belongs. (For further details see the Bar chapter)

The element load vector fe
i can be analyzed further if we assume that the

given load q(x) at most varies as a linear function over each element interval.
That is the following linear expression

q(x) = (1− x

Le
)qe

1 +
x

Le
qe
2 (4.56)

is useful where qe
1 and qe

2 are the intensity of load q(x) at the nodes. This idea
means actually an ”approximation” of given data of the problem which at the
first glance seem to be a bit stupid. What we gain from this idea is that we can
proceed one further step analytically and the input to the numerical procedure
will be the load intensity at the nodes only. From an engineering point of view
one can also argue that if the given load q(x) varies rapidly with respect to x
we need to use shorter elements anyway, if we would like to try to catch details
caused by the rapid load change.

The element load vector fe
i can be rewritten as

fe
i =

∫ Le

0





1− 3x2/Le2
+ 2x3/Le3

x− 2x2/Le + x3/Le2

3x2/Le2 − 2x3/Le3

x3/Le2 − x2/Le





(
(1− x

Le
)qe

1 +
x

Le
qe
2

)
dx (4.57)

where we have four different integrals to solve. The polynomial expressions are
all at most of a fourth order degree. The result from these four integrations gives

fe
i =





Le(7qe
1 + 3qe

2)/20
Le2

(qe
1/20 + qe

2/30)
Le(3qe

1 + 7qe
2)/20

−Le2
(qe

1/30 + qe
2/20)





fe
i =





q0L
e/2

q0L
e2

/12
q0L

e/2
−q0L

e2
/12)





(4.58)

where the second expression is the special case when the load q(x) is a constant,
that is qe

1 = qe
2 = q0. From this we can conclude that a line load q(x) also

generate moments as well as nodal loads.

In this context one should also mention that some people argue for an ad
hoc reduced element load vector without nodal moments which sometimes also
is implemented in commercial programs. The treatment shown here is called a
Consistent element load vector and this is what comes out from this mathematicalConsistent

element load
vector

formulation.
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Concerning the boundary condition terms fh and fg we have

fh =





0
...
0
T0

−M0





fg =





12EIg1/Le3
+ 6EIg2/Le2

6EIg1/Le2
+ 4EIg2/Le

−12EIg1/Le3 − 6EIg2/Le2

6EIg1/Le2
+ 4EIg2/Le

0
...
0





(4.59)

where these are two global load vector contributions with the same number of
rows as in the global unknown freedom vector a. Please observe that the di-
mension of the terms alters between force and moment and in this discussion the
essential boundary conditions occur at the left end of the beam and the natural
bc. at the right end. Several other combinations are also of course possible.

4.9 A 2D Beam Element with Axial Stiffness

In most real space frame structures it is also necessary to take axial deformations
into account. This is, as already mentioned, not included in the previous element.
Fortunately it is easy to cure this deficiency of the element. In cases with small
deformations it is a good approximation saying that deformations in the axial
and the transversal directions evolves independent of each other.
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Figure 4.7: A 2D 2-node frame element freedom set

That is the bar problem and the beam problem can be solved independent
from each other using the same finite element mesh. Such a beam element re-
sisting axial stiffness also is often called a Frame element Frame element
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Box: ‘2D 2-node frame element’

Ke =
1
Le




EA 0 0 −EA 0 0
12EI/Le2

6EI/Le 0 −12EI/Le2
6EI/Le

4EI 0 −6EI/Le 2EI
EA 0 0

12EI/Le2 −6EI/Le

sym 4EI




Please observe that the sequence between the six freedoms in the element is not
critical. This selection is only one of several others which will work equally well.
Most often textbooks starts, as has been done here, with the axial freedom ue

1

and continue with the two other freedoms at the first node ve
1 and θe

1 and end up
with the same freedoms at the second node of the element.

Still this element lacks one important feature to be a candidate for implemen-
tation in a general purpose finite element program. This 2D element stiffness
matrix is established along a local direction and in a real space frame application
one most likely will find members running in arbitrary directions in 2D or 3D
space. This defect will be cured in the next section where we will discuss a 3D
beam element in an arbitrary direction in 3D space.

4.10 A 3D Space Frame Element

To establish a general 3D beam element for any space frame analysis is rather
straightforward. To add bending out of the plane it is just a matter of superim-
posing of a second load system bending the beam in the xy-plane. For an applied
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Figure 4.8: A 3D 12-freedom beam element defined in a local system

torque trying to twist the beam the obvious choice is to use St. Venant torsional
theory. An element stiffness matrix Ke can now easily be establish from what
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we already know, as follows

Ke =




a1 0 0 0 0 0 −a1 0 0 0 0 0
b1 0 0 0 b2 0 −b1 0 0 0 b2

c1 0 −c2 0 0 0 −c1 0 −c2 0
d1 0 0 0 0 0 −d1 0 0

c3 0 0 0 c2 0 c4 0
b3 0 −b2 0 0 0 b4

a1 0 0 0 0 0
b1 0 0 0 −b2

c1 0 c2 0
d1 0 0

s y m. c3 0
b3




(4.60)

where

a1 = EA/Le d1 = GK/Le

b1 = 12EIz/Le3
b2 = 6EIz/Le2

b3 = 4EIz/Le b4 = 2EIz/Le

c1 = 12EIy/Le3
c2 = 6EIy/Le2

c3 = 4EIy/Le c4 = 2EIy/Le

and G is the torsional modulus of the material and K is the torsional proportional
constant for the cross section.

Remarks:

• This element works superior with respect to classical beam theory as long
as the cross section has two axes of symmetry.

• In cases with open thin-walled cross sections warping of the cross section
can be significant and one should be careful. This typically happens in
cross sections where the centroid and the shear center of the cross section
do not coincide.

• The selected sequence between the element freedoms ae is in this case

aeT

= { ue
1 ve

1 we
1 θe

x1 θe
y1 θe

z1 ue
2 ve

2 we
2 θe

x2 θe
y2 θe

z2 }

• One useful technique for overcoming this problem is to use shell element
for modeling of such cross section.

We now need an element which can be used in an arbitrary direction in 3D
space. This can be taken care of by the rules for transformation of a vector in
3D space. Please note that the previous coordinate system in figure 4.8 now has
become a prime coordinate system or local coordinate system and the element
freedoms present in figure 4.9 are not the same as the ones in figure 4.8.
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Figure 4.9: A 3D global 12-freedom beam element

Let us focus on a vector u defined by components in the global coordinate
system and the same vector now called u′ defined by components in the local
coordinate system. The relation between the components of this vectors is

u′ = Λu (4.61)

where the matrix Λ is 3x3 matrix containing direction cosines between the axes
of the two systems. The transformation of the element freedom vector a′e in the
local system to element freedoms ae defined in the global system is given by

a′e =




Λ 0 0 0
0 Λ 0 0
0 0 Λ 0
0 0 0 Λ


 = Tae (4.62)

and this can can be used for transformation of the element-local equilibrium
equation

K′ea′e = f ′e. (4.63)

where the matrix K′e is equivalent to what is called Ke in equation 4.60. By
putting equation 4.62 into equation 4.63 and multiplying with T T from the left
we can identify a global 3D element stiffness matrix Ke and a global element
load vector fe for a beam or frame element resisting axial forces and twisting
moment and therefore useful in general 3D space frame analysis.

T T K′eT︸ ︷︷ ︸
=Ke

ae = T T f ′e
︸ ︷︷ ︸

=f e

(4.64)

4.11 Stress and Strain Calculations

As for bar elements and all other elements based on basically the same finite
element formulation, the strain and the stress is calculated element by element
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at the end of the numerical analysis. We have by generalizing equation 4.2 and
use of equation 4.3

σx(x, y, z) = Eεx(x, y, z) = E

(
du(x, 0)

dx
− y

d 2v(x)
dx2

− z
d 2w(x)

dx2

)
(4.65)

where the displacement component in the local y-direction is w(x) and v(x) is
the displacement in the y-direction. The first term is the axial stress due to a
force acting along the local direction of the beam. The axial and the bending
stresses together can be expressed in the element freedom vector as follows

σx(x, y, z) = E

(
1
Le

[ −1 1 ]
{

ue
1

ue
2

}

− y
[

Be
1 Be

2 Be
3 Be

4

]




ve
1

θe
z1

ve
2

θe
z2





− z
[

Be
1 Be

2 Be
3 Be

4

]




we
1

θe
y1

we
2

θe
y2




) (4.66)

This expression is used in the TRINITAS program for plotting of the stress
level on the surface of every beam element.
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4.12 Numerical Examples

A 2D console beam

Let us consider a simple standard case which also has an analytical solution. The
left end of the beam has a completely rigid support and the right end is free. A
constant load q(x) = q0 per unit length acts along the entire length of the beam.
At the right end acts a concentrated force P . That is, from a comparison with
box S we have the following values of the boundary conditions g1 = g2 = h1 = 0
and h2 = P .

x

I, E, L

q
0

y,   v(x)
P

Figure 4.10: A 2D console beam example

The exact solution to this problem is received from the Elastic curve equation
4.17 which in this case can be simplified as follows

d 4v(x)
dx4

= q0/EI. (4.67)

because both the cross section geometry and the material do not change along
the beam. After integrating four times without boundaries we have

d 3v(x)
dx3

= q0x/EI + C1

d 2v(x)
dx2

= q0x
2/2EI + C1x + C2

dv(x)
dx

= q0x
3/6EI + C1x

2/2 + C2x + C3

v(x) = q0x
4/24EI + C1x

3/6 + C2x
2/2 + C3x + C4.

Four unknown constants C1 to C4 have to be determined from the given boundary
conditions. The left end conditions g1 = g2 = 0 imply immediately that C3 =
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C4 = 0. The conditions at the right end gives

h1 = 0 ⇒ d 2v(L)
dx2

= q0L
2/2EI + C1L + C2 = 0

h2 = P ⇒ d 3v(L)
dx3

= q0L/EI + C1 = −P/EI

C1 and C2 equal to

C1 = −P/EI − q0L/EI C2 = PL/EI + q0L/22EI

and all constants are known and the solution v(x) is

v(x) =
q0L

4

24EI

(
6(

x

L
)2 − 4(

x

L
)3 + (

x

L
)4

)
+

PL3

6EI

(
3(

x

L
)2 − (

x

L
)3

)
.

Let us now solve this problem numerically by Finite Elements and hand calcula-
tions. Use only one element with just a vertical displacement v and a rotation θ
in the right end. This one element problem with its left end fixed will end up in
the following two global stiffness equations describing the behavior of the console
beam.

EI

L3

[
12 −6L
−6L 4L2

] {
v
θ

}
=

{
q0L/2 + P
−q0L

2/12

}

The two global freedoms v and θ can be calculated as follows
{

v
θ

}
=

1
12L2

[
4L2 6L
6L 12

]
L3

EI

{
q0L/2 + P
−q0L

2/12

}
⇒

{
v
θ

}
=

{
q0L

4/8EI + PL3/3EI
q0L

3/6EI + PL2/2EI

}
.

From this result we can conclude that both the displacement v(x = L) and the
rotation θ = dv(x = L)/dx at the right end are exactly the same as from the
analytical solution above. Let us also compare the displacements along the beam
at an arbitrary x-value. By use of the values of the freedoms v and θ above
putted into the equations 4.36 and 4.46 we obtain

ve(x) = Ne
3 (x)v + Ne

3 (x)θ =
(
3(

x

L
)2 − 2(

x

L
)3

) (
q0L

4

8EI
+

PL3

3EI

)
+

(
(
x

L
)3 − (

x

L
)2

)
L

(
q0L

3

6EI
+

PL2

2EI

)

which after simplification gives

v(x) =
q0L

4

24EI

(
5(

x

L
)2 − 2(

x

L
)3

)
+

PL3

6EI

(
3(

x

L
)2 − (

x

L
)3

)
.
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A second important conclusion which can be drawn from this results is that the
finite element approximation in the interior of the element is exact for the part
of the displacement generated by the concentrated load P but not for the part
emanating from the distributed load q0. This is obvious and this conclusion could
be drawn as a cubic polynomial was used for the beam shape function which is
not sufficient for catching the fourth order term originating from the particular
solution to the elastic curve equation for this example.

That is, in linear static elastic beam models it is enough using just one element
for intervals without any distributed load.

If we would like to do a numerical comparison with a finite element program
we need numerical values. Use L = 1.0 m, P = 1000. N, q0 = 1000. N/m,
E = 2.0 · 1011 Pa. Assume that the cross section has a height h and a width b
where b = 4h = 0.01 m which gives the area moment of inertia I = 5.333 · 10−8

m4. At the tip of the beam we have the best agreement between this analytical
solution and a finite element solution and from the two load systems we receive

v(x = L) = 0.01172 + 0.03125 ≈ 0.043m

from both the analytical and a finite element solution with only one element.

Displacement

Length     =

x-comp.  =

y-comp.   =

z-comp.  =

 0.04297

 0.

 0.

 0.04297

Max Axial+Bending Stress =  0.531E+09

Figure 4.11: A one element TRINITAS analysis
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4.13 Summary

After assuming that every cut perpendicular to the mean surface of the beam
will remain plane the following local equations can be stated.

Box:L ‘Local Euler-Bernoulli Beam Equations’

d2M(x)
dx2

+ q(x) = 0, M(x) =
∫∫

A(x)

yσx(x, y)dydz

σx(x, y) = E(x)εx(x, y)

εx(x, y) =
du(x, 0)

dx
− y

d 2v(x)
dx2

By elimination of the moment M(x), the strain εx(x, z) and the stress σx(x, z)
the following 1D fourth-order Boundary-Value problem is received.

Box: S ‘Strong form for an Euler-Bernoulli Beam’

Given q(x), h1, h2, g1 and g2. Findv(x) such that

d 2

dx2

(
E(x)I(x)

d 2v(x)
dx2

)
− q(x) = 0 ∀ x ∈ Ω = ]0, L[

v(0) = g1 on Sg −E(L)I(L)
d 2v(L)

dx2
= h1 on Sh

dv(0)
dx

= g2 on Sg − d

dx

(
E(L)I(L)

d 2v(L)
dx2

)
= h2 on Sh

The following equivalent weak formulation is established after partial integrations
and restricting the weight function to be equal to zero where essential boundary
conditions are present.

Box:W ‘Weak form for an Euler-Bernoulli Beam’

Given q(x), T0, M0, g1 and g2. Findv(x) such that
∫ L

0

d 2w(x)
dx2

E(x)I(x)
d 2v(x)

dx2
dx =

∫ L

0

w(x)q(x) dx + w(L)T0 − dw(L)
dx

M0

v(0) = g1
dv(0)
dx

= g2
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By requiring that both the approximation and the weight function are built up
from the same set of functions a discrete Galerkin formulation is achieved.

Box:G ‘Galerkin form of an Euler-Bernoulli Beam’

Find a such that

cT (Ka− f) = cT r = 0

for every choice of the vector c (the weight function)

The single equation in the Galerkin formulation above, which shall be interpreted
as a scalar product between a row vector cT and a column vector r, will now
turn over into a system of linear algebraic equations (M) because the residual
vector r must be equal to a zero vector.

Box:M ‘Matrix form of an Euler-Bernoulli Beam’

Find a such that

Ka = f

where K and f are known quantities

In this beam case discussion the solution vector a to this matrix problem will
contain both displacements and rotations at the nodes.

From here the numerical procedure starts and the following work flow can be
identified.

Numerical Work Flow:

• Split the entire domain into a number of finite elements

• Define domain properties such as the Young’s modulus E, the cross section
A and the area moment of inertia I in the elements

• Define essential boundary conditions such as fixed or prescribed node dis-
placements and/or rotations

• Define natural boundary condition as given concentrated or distributed
forces or moment loads

• Make a global numbering sequence of all involved unknown freedoms (Nor-
mally done automatically by the program)
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• Calculate all element stiffness matrices Ke
i and expand and add these stiff-

ness coefficients into the appropriate positions in the global stiffness matrix
K

• Calculate all element load vectors fe
i and expand and add these load con-

tributions into the appropriate positions in the global load vector f

• Solve the system of linear algebraic equation Ka = f by some Gauss’
elimination or LR-factorization look-a-like procedure. (Further discussions
concerning how to calculate the unknown vector a will be given later on in
the chapters to come)

• Pick up the element freedom vector ae
i from the global one a for one element

at the time and calculate the strains and the stresses

• Investigate the results, hopefully in terms of a nice color picture showing
the deformed structure with the stress levels in color, and try to examine
the relevance of the achieved approximation.

In most finite element analyses, after the results have been accepted from an
overall engineering point of view, one also have to accept the analysis from a
numerical point of view which normally means a refinement of the mesh in some
critical part of the domain trying to find out if the accuracy of the numerical
results is sufficient.

Finally, one should not forget that the reason for doing the finite element
analysis was some overall engineering question concerning how to design a cer-
tain piece of equipment and the finite element analysis only gives some hints
concerning the size of displacements, strains and stresses in a model of real-
ity.




