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Nomenclature

r position (= x x̂ + y ŷ)
V fluid velocity (= u x̂ + v ŷ)
M Mach number
Cp pressure coefficient
p static pressure
ρ density
Φ full potential
ϕ perturbation potential
δ∗ displacement thickness
θ momentum thickness
H shape parameter
H∗ kinetic energy thickness shape parameter
H∗∗ density thickness shape parameter
cf skin friction coefficient
cD dissipation coefficient

n̂ unit normal vector
ŝ unit tangential vector
` perimeter arc-length coordinate
n wall-normal coordinate
s streamwise arc-length coordinate
ξ, η finite-element coordinates
Nj(ξ,η) finite-element interpolation function
Wi(ξ,η) finite-element residual weighting function
α freestream flow angle
Λ farfield apparent source
Γ farfield circulation
κx, κy farfield doublet components
( )∞ freestream quantity
( )w body-wall or wake quantity
( )e boundary layer edge quantity
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Figure 1: Potential flow domain.

1 Potential and Velocity

The velocity vector field is defined as the gradient of the full potential field Φ(r).

V(r) = ∇Φ (1)

This is governed by the full-potential (FP) equation

∇ ·
[

(ρ+δρ)∇Φ
]

= 0 (2)

ρ = ρ∞

[
1 +

γ−1

2
M2
∞

(
1− |∇Φ|2

V 2
∞

)]1/(γ−1)

(3)

where the isentropic density expression (3) assumes a constant total density everywhere, and δρ is
its numerical upwinding change which will be formulated to enable shock capturing.
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The appropriate boundary conditions, with wall-transpiration viscous modeling, are

Φ = Φ∞ + ϕff (outer boundary) (4)

∇Φ · n̂w = dm/ds (body surface) (5)

where the freestream potential is specified in terms of the freestream speed and angle of attack.

Φ∞ = V∞ · r = V∞(x cosα + y sinα) (6)

and m(s) = ρeueδ
∗ is the viscous mass defect along the surface.

A body with lift requires that a branch cut with a potential jump extend from the body, which
for an airfoil is most conveniently chosen to be roughly the wake trajectory from the trailing edge.
Referring to Figure 1, the appropriate boundary conditions on the branch cut are

(∇Φ · n̂w)1 + (∇Φ · n̂w)2 = dm/ds (7)

Φ2 − Φ1 = Γ (8)

where Γ is the overall body circulation. Equation (8) in effect also imposes equal streamwise
velocities and hence equal pressures across the branch cut.

2 Farfield Potential

The farfield perturbation potential ϕff appears in the outer boundary condition (4) for external
flows. It is a specific solution of the Prandtl-Glauert equation and outer boundary condition,

β2 ∂
2ϕ

∂x2
+

∂2ϕ

∂y2
= 0 (9)

|∇ϕ| → 0 (as r →∞) (10)

which is what remains when Φ = Φ∞ +ϕ is substituted in the full-potential equation and BC, and
only the terms which are first order in ∇ϕ are retained. For subsonic freestream flow, or M∞< 1,
the leading-order solution to (9) has the form

ϕff (x,y ;M∞, α ; Λ,Γ, κx, κy) =
Λ

2π
ln r̄ − Γ

2π
θ̄ +

κx
2π

cos θ̄

r̄
+

κy
2π

sin θ̄

r̄
+ . . . (11){

x̄

ȳ

}
≡

[
cosα sinα

−β sinα β cosα

]{
x−xs
y−ys

}
(12)

β ≡
√

1−M2
∞ (13)

r̄2 ≡ x̄2 + ȳ2 (14)

θ̄ ≡ arctan(ȳ/x̄) (15)

where (12) is the Prandtl-Glauert coordinate transformation giving x̄, ȳ aligned with the freestream.
The singularity location xs, ys is chosen to be near or inside the body for best accuracy, and
specifically to give the smallest-possible truncated terms in the expansion (11). The Γ (circulation)
coefficient is required to produce lift. In contrast, the Λ (source) and κx,κy (doublet) terms can all
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be set to zero which gives the simplest model, but defining them appropriately will give the best
possible accuracy for a domain of given size.

The farfield velocity is most easily evaluated by differentiating in the transformed coordinates, and
applying the inverse Prandtl-Glauert transformation.

Vff = V∞ + ∇ϕff (16)

∇ϕff =

[
cosα −β sinα

sinα β cosα

]{
∂ϕff/∂x̄

∂ϕff/∂ȳ

}
(17)

∂ϕff

∂x̄
=

Λ

2π

x̄

r̄2
+

Γ

2π

ȳ

r̄2
+

κx
2π

ȳ2−x̄2

r̄4
+

κy
2π

−2x̄ȳ

r̄4
(18)

∂ϕff

∂ȳ
=

Λ

2π

ȳ

r̄2
+

Γ

2π

−x̄
r̄2

+
κx
2π

−2x̄ȳ

r̄4
+

κy
2π

x̄2−ȳ2

r̄4
(19)

Determination of the singularity strengths Λ,Γ, κx, κy will be treated later.

3 Finite-Element Full-Potential Solution

3.1 Element Interpolation

A quadrilateral cell in x, y space is mapped to a reference cell in ξ, η space extending over (ξ, η) =
(−1 . . .+1 , −1 . . .+1). Each field variable is then defined over the cell by its nodal values ( )j using
the four bilinear interpolation functions Nj(ξ,η),

N

N

N

N

−1

+1

−1

+11

2

3

4

ξ

η

N1(ξ,η) ≡ 1
4(1− ξ)(1− η)

N2(ξ,η) ≡ 1
4(1 + ξ)(1− η)

N3(ξ,η) ≡ 1
4(1 + ξ)(1 + η)

N4(ξ,η) ≡ 1
4(1− ξ)(1 + η)

(20)

x(ξ,η) =
∑4
j=1 xj Nj(ξ,η) (21)

y(ξ,η) =
∑4
j=1 yj Nj(ξ,η) (22)

Φ(ξ,η) =
∑4
j=1 Φj Nj(ξ,η) (23)

etc., where ( )j are the nodal variable values.

The mapping Jacobian J and the inverse mapping derivatives are now computed in the usual
manner,

J (ξ,η) = xξ yη − xη yξ (24)[
ξx ξy
ηx ηy

]
(ξ,η) =

1

J

[
yη −xη
−yξ xξ

]
(25)
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where xξ, yη, etc. denote derivatives, which are obtained directly from (21) and (22). The inverse
derivatives are then used to compute the x, y-components of the interpolation function gradient
∇Nj = Nxj

x̂ +Nyj
ŷ.

Nxj
(ξ,η) = ξxNξj

+ ηxNηj
(26)

Nyj
(ξ,η) = ξyNξj

+ ηyNηj
(27)

where Nξj
, Nηj

are obtained easily by differentiating (20). The gradient x, y-components of all
interpolated quantities can then be obtained by direct summations.

∂Φ

∂x
(ξ,η) =

∑4
j=1 Φj Nxj

(28)

∂Φ

∂y
(ξ,η) =

∑4
j=1 Φj Nyj

(29)

3.2 Edge Interpolation

Interpolation over an element edge segment uses the two linear interpolation functions

Ñ1(ξ) ≡ 1
2(1− ξ)

Ñ2(ξ) ≡ 1
2(1 + ξ)

(30)

together with the two nodal values ( )j , so that along the edge we have

x(ξ) =
∑2
j=1 xj Ñj(ξ) (31)

y(ξ) =
∑2
j=1 yj Ñj(ξ) (32)

Φ(ξ) =
∑2
j=1 Φj Ñj(ξ) , etc. (33)

Arc length derivatives are given by direct chain rule,

dΦ

ds
(ξ) =

∑2
j=1 Φj Ñsj (34)

Ñsj =
dÑj/dξ

ds/dξ
=

∓1√
(x2−x1)2 + (y2−y1)2

(35)

where −1,+1 give Ñs1 , Ñs2 . Equation (34) is equivalent to simple two-point finite differencing.

3.3 Galerkin Weighted-Residual Formulation

The Galerkin method chooses a weighting “tent” function Wi(ξ,η) for node i to be the union of the
four, two, or one Nj interpolating functions influenced by that node, as shown in Figure 2.

Since the Wi(ξ,η) of nodes in the interior are zero on their edges, the edge integral around Wi for
any interior node vanishes. ∮ { }

Wi d` = 0 (for interior nodes) (36)

For nodes on the domain outer boundary the edge Wi is not zero, and the cell-boundary integral (36)
will be evaluated using appropriate boundary condition information.
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Figure 2: Residual weighting tent function Wi for interior, edge, and corner nodes.

A weighted-residual integration of the full-potential equation (2) is constructed and expanded as

RΦ
i (Φ) ≡

∫∫
∇ ·

[
(ρ+δρ)∇Φ

]
Wi dx dy (37)

=

∫∫
∇ ·

[
(ρ+δρ)∇Φ Wi

]
dx dy −

∫∫
(ρ+δρ)∇Φ · ∇Wi dx dy

=

∮
(ρ+δρ)∇Φ · n̂Wi d` −

∫∫
(ρ+δρ)∇Φ · ∇Wi dx dy = 0 (38)

where the first term in (38) has then been converted to a cell-boundary line integral via Gauss’s
Theorem. The integrals need to be evaluated over only those edges and cells on which Wi is nonzero.

Writing ∇Φ in (38) in its interpolated forms (28),(29), the area integral in (38) becomes∫∫
(ρ+δρ)∇Φ · ∇Wi dx dy =

∑
elements

(ρ+δρ)
∑
j

Φj

∫∫ (
Nxj

Wxi
+Nyj

Wyi

)
dx dy (39)

where the first sum is over the elements covered by Wi, and the second sum is over the four nodes
of each element. The upwinded density factor (ρ+δρ) is constant over each element, and will be
discussed and defined later.

The line integral in (38) is typically evaluated using boundary information for boundary nodes such
as on the body, where a Neumann boundary condition is imposed.

∮
(ρ+δρ)∇Φ · n̂Wi d` =


0 , (for interior node i)∫
−
[
(ρ+δρ)∇Φ · n̂w

]
BC

Wi ds , (for boundary node i)
(40)

The negative sign in (40) is needed because n̂ points out of the fluid while n̂w points out of the
body, as indicated in Figure 1. Possible values for the boundary data are

[
(ρ+δρ)∇Φ · n̂w

]
BC

=

 0 , (for solid wall)
dm

ds
, (for wall-transpiration viscous model)

(41)

where m = ρeueδ
∗ is the viscous mass defect and s is the streamwise arc length along the wall.
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For boundary nodes where a Dirichlet boundary condition is imposed, the residual (37) is replaced
by a direct condition on the potential.

RΦ
i ≡

∫
[ Φ− ΦBC ]Wi ds = 0 (42)

Possible values for the boundary data are

ΦBC =

{
Φ∞ + ϕff , (for outer boundary)
Φspec , (for inverse-design wall)

(43)

where Φspec(s) =
∫ s qspec ds is the potential obtained from a specified surface speed qspec(s) or

corresponding surface pressure in an inverse-design calculation.

The branch cut boundary conditions (7) and (8) are implemented by the residuals

RΦ
i1 ≡

∫
(ρ+δρ)∇Φ · n̂1 Wi1

ds1 +

∫
(ρ+δρ)∇Φ · n̂2 Wi2

ds2 +

∫
dm

ds
Wi ds = 0 (44)

RΦ
i2 ≡

∫
Φ Wi1

ds1 −
∫

[ Φ− Γ ] Wi2
ds2 = 0 (45)

where the circulation Γ is the same quantity appearing in the far-field potential ϕff expansion (11).

3.4 Element-Integral Evaluation

The element area integrals needed to construct all the equation residuals are evaluated using a
4-point Gaussian area quadrature on the ξ–η cell,∫∫ { }

dx dy =

∫
1

−1

∫
1

−1

{ }
J dξ dη '

4∑
k=1

{ }
(ξk,ηk) J (ξk,ηk) wk (46)

where (ξk, ηk) are the Gauss-point locations, and wk are the corresponding Gauss weights.

The (ρ+δρ) density factor appearing in the various weighted integrals above can be assumed to be
constant over each of the individual quadrilateral cells. The reason is that Φ(ξ,η) is bilinear over a
cell, so that ∇Φ(ξ,η) and the corresponding ρ(ξ,η) are nearly constant. Specifically, the cell ρ value is
obtained from (3) using ∇Φ computed at the cell center at (ξ, η) = (0, 0) rather than at the Gauss
points. The area integral in (38) and (39) over one cell is then evaluated as follows.∫∫

(ρ+δρ)∇Φ · ∇Wi dx dy ' (ρ+δρ)(0,0)

4∑
k=1

{
∇Φ · ∇Wi

}
(ξk,ηk) J (ξk,ηk) wk (47)

ξk, ηk = ±
√

1/3 = ±0.577350269189626 (48)

wk = 1 (49)

Evaluating ∇Φ · ∇Wi at the four Gauss points (ξk, ηk) makes spatial sawtooth oscillations in Φi

visible to RΦ
i , thus producing a well-conditioned overall Jacobian matrix.

The element boundary integrals are evaluated using 2-point Gaussian line quadrature on the ξ or
η boundary. ∮ { }

d` =

∮ { }
J dξ '

2∑
k=1

{ }
(ξk) J (ξk) wk (50)
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With linear interpolation, the Jacobian is actually piecewise constant along each cell edge segment,
and over each segment simplifies to

J =
∆`

∆ξ
=

∆`

2
(51)

where ∆` is the length of the segment.

3.5 Global-Variable Equations

The freestream angle of attack α, Mach numberM∞, and the farfield potential coefficients Λ,Γ, κx, κy
appear in many or all node residuals. Hence, they are called global variables, and each one requires
an additional residual to close the overall system. Possible constraints on the angle of attack are

Rα ≡ α− αspec = 0 (specified angle of attack) (52)

Rα ≡ CL − CLspec = 0 (specified lift coefficient) (53)

where the lift coefficient can be replaced by the circulation via the theoretically exact relation
CL = 2Γ/cV∞. In the numerical solution there will be some small difference due to truncation error.

The Mach number can also be imposed directly, or it can depend on the lift coefficient,

RM ≡ M∞ −M∞spec = 0 (specified Mach number) (54)

RM ≡ M∞ −M∞1
/
√
CL = 0 (specified unit-lift Mach number)(55)

where the unit-CL Mach number M∞1
is specified and held fixed. This case corresponds to the

physical lift remaining fixed as the airspeed is varied at a fixed altitude. For viscous-flow cases, the
same type of fixed-lift condition can be imposed on the Reynolds number in the form

Re = Re1/
√
CL (56)

where the unit-CL Reynolds number Re1 is specified explicitly.

The physically-appropriate constraint on the circulation is the Kutta condition, which is defined as
the difference between the top and bottom surface pressures at the trailing edge.

RΓ ≡ piTE2
− piTE1

= 0 (57)

A simpler alternative definition is to impose the wake branch-cut jump condition (45) pointwise at
the wake station also.

RΓ ≡ ΦiTE1
− ΦiTE2

− Γ = 0 (58)

The farfield source and doublet strengths can be set to zero via the simple residuals

RΛ ≡ Λ = 0 (59)

Rκx ≡ κx = 0 (60)

Rκy ≡ κy = 0 (61)

which will give a well-posed problem and a reasonable solution.
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A more accurate solution, especially on modest-sized grids, will be obtained if we instead set the
strengths so as to give the best possible match between the normal derivatives of Φ∞ + ϕff and Φ
at the outer boundary. To impose this, we first define the normal-derivative mismatch (or error)
functional

I∞ ≡
∮

1

2

[
(V∞+∇ϕff) · n̂−∇Φ · n̂

]2
d` (62)

where the integral is evaluated over the entire outer boundary. The farfield strengths are then set
so that this functional is minimized, via the following residuals.

RΛ ≡ ∂I∞
∂Λ

=

∮ [
(V∞+∇ϕff) · n̂−∇Φ · n̂

] ∂∇ϕff

∂Λ
· n̂ d` = 0 (63)

Rκx ≡ ∂I∞
∂κx

=

∮ [
(V∞+∇ϕff) · n̂−∇Φ · n̂

] ∂∇ϕff

∂κx
· n̂ d` = 0 (64)

Rκy ≡ ∂I∞
∂κy

=

∮ [
(V∞+∇ϕff) · n̂−∇Φ · n̂

] ∂∇ϕff

∂κy
· n̂ d` = 0 (65)

The derivatives ∂∇ϕff/∂Λ, ∂∇ϕff/∂κx, ∂∇ϕff/∂κy are purely geometric quantities obtained directly
from equations (17)–(19). Hence, the residuals above are nearly linear in the strengths Λ, κx, κy
via the ∇ϕff · n̂ term, giving a well-posed set of constraint equations for these quantities.

Note that Γ could not have been obtained in this manner by minimizing I∞ with respect to Γ, since
∂∇ϕff/∂Γ is tangential to a circle around the xs, ys location at the airfoil. The consequence is that

∂∇ϕff

∂Γ
· n̂ ' 0

on average over the outer boundary, so that a minimum-error residual for Γ having the same
form as (63)–(65) would be a nearly-singular equation. The Kutta condition (58) is therefore the
appropriate constraint on Γ for both physical and computational reasons.

3.6 Density Upwinding

Some form of upwinding is required to give a non-singular full-potential equation Jacobian at sonic
points, and to permit shock capturing in the solution. The treatment here computes the density
upwinding change by

δρ = −µ1 (ρi − ρi−1) + µ2 (ρi−1 − ρi−2)
∆si−1/2

∆si−3/2
(66)

µ1 = Cµ max

(
0 , 1− M2

crit

M2
max

)
(67)

µ2 =

{
0 , if 1st-order upwinding is specified
µ1 , if 2nd-order upwinding is specified (68)

M2
max = max

(
M2
i , M

2
i−1

)
(69)

∆si−1/2 = | ri − ri−1 | (70)

∆si−3/2 = | ri−1− ri−2 | (71)

where here i denotes a cell center at (ξ, η) = (0, 0), and not a node at (±1,±1). The i−2, i−1, i cell
centers are assumed to lie along the local∇Φ direction. For a general grid this requires interpolation
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between neighboring cell centers, which constitutes Jameson’s rotated-difference scheme. In this
description we will assume that the grid increasing-i direction is nearly aligned with ∇Φ.

The first µ1 term in equation (66) is Hafez’s 1st-order upwinding scheme, and the optional µ2

term is a density-extrapolation correction which restores 2nd-order accuracy. The two forms are
diagrammed in Figure 3.

s

0

1

µ

ρ
i

ρ
i −1

ρ

ii−1
i −1/2∆s

s

0

1

µ

ρ
i −2

ρ
i −1

ρ

ii−1i−2
i −1/2∆si∆s −3/2

ρ
i

ρ+δ

ρ
i

ρ ρ+δρδ i

Figure 3: Density upwinding change δρ using 1st-order and 2nd-order schemes. The
index i here indicates cell centers rather than nodes. In each case, δρ is the fraction
µ of the difference between the density extrapolated from the upstream i−1 and/or
i−2 locations, and the local density at i.

Suitable values for the constants in (66) are

Mcrit ' 0.98 (72)

Cµ ' 1.0 (73)

which were obtained by numerical experimentation. Theoretically, Cµ = 0.5 will still give a numer-
ically stable scheme and the sharpest possible shock, provided the shock is perfectly aligned with
the grid lines. For non-aligned shocks, the values above generally give better results.

3.7 Newton Solution Method

For inviscid flow, the unknowns in the discrete problem are the local full potential values Φi at all
the grid nodes, and the six global variables

gk ≡
{
α M∞ Λ Γ κx κy

}T

associated with the entire flowfield. The entire equation system then has the form

~R(Φj , gl) ≡


RΦ
i

Rgk

 = 0 (74)

where
Rgk ≡

{
Rα RM RΛ RΓ Rκx Rκy

}T
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is the vector of global residual functions.

The residuals are in general nonlinear functions of the unknowns, so a direct solution of the equation
set (74) is not possible. Instead, the problem is solved by Newton iteration, where we obtain a
sequence of progressively-better solution iterates

{Φi gk }0 , {Φi gk }1 , {Φi gk }2 . . . {Φi gk }n

where n is the iteration counter and n=0 is some reasonable initial guess for the solution, such as
freestream flow for Φi, and either zeros or specified values (if available) for the global variables.

{Φi gk }0 =
{

Φ∞i 0
}

Given some current solution iterate n, we calculate the Newton changes {δΦi δgk} which when
added to the iterate n give the next iterate n+1. The requirement for these changes is that the
residual vector is zero after the update, i.e.

~R(Φn+1
i , gn+1

k
) = ~R(Φn

i +δΦi , g
n
k +δgk) = 0.

Because this is a nonlinear system, we linearize it about the current iterate to give

~R(Φn
i +δΦi , g

n
k +δgk) '


RΦ
i

Rgk



n

+

 Aij Cil

Gkj Kkl


n

δΦj

δgl

 = 0 (75)

where the rightmost residual vector and the leftmost Jacobian matrix is formed from the four
submatrices

Aij ≡
∂RΦ

i

∂Φj

∣∣∣∣∣
{Φi gk}n

, Cil ≡
∂RΦ

i

∂gl

∣∣∣∣∣
{Φi gk}n

(76)

Gkj ≡
∂Rgk
∂Φj

∣∣∣∣∣
{Φi gk}n

, Kkl ≡
∂Rgk
∂gl

∣∣∣∣∣
{Φi gk}n

(77)

are all evaluated at the current solution iterate {Φi gk}n as indicated. With the residual vector and
the matrix known numerically, equation (75) is a large linear system which can be solved for the
unknown Newton changes. 

δΦj

δgl

 =

 Aij Bil

Ckj Dkl


−1
−RΦ

i

−Rgk

 (78)

In practice, in place of the matrix inverse we would instead perform a LU-decomposition of the
matrix, followed by a back-substitution with the residual vector. Since each RΦ

i function depends
on only a few neighboring Φj values, the largest Aij block of the Jacobian matrix is very sparse, so
that we can also use various iterative methods to solve the linear system (75).
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Regardless of the solution procedure, the Newton changes obtained are used to update the current
solution iterate to give the next iterate,

Φj

gl



n+1

=


Φj

gl



n

+ ω


δΦj

δgl

 (79)

where ω ≤ 1 is a limiter or under-relaxation factor. This is necessary to prevent excessive changes
which may produce unphysical situations such as a negative density in the n+1 solution iterate.
Once the changes become sufficiently small we can set ω=1, and as the solution is approached we
observe quadratic convergence, i.e.∣∣∣ δΦn+1

i δgn+1
k

∣∣∣ ∼ ∣∣∣ δΦn
i δgnk

∣∣∣2 (80)

so that the number of converged significant digits in the iterates roughly doubles with each iteration.

3.8 Field Velocity Calculation

The velocity components are approximated over each cell via their nodal values uj , vj using the
bilinear interpolation functions.

u(ξ,η) =
∑
j uj Nj(ξ,η)

v(ξ,η) =
∑
j vj Nj(ξ,η)

(81)

Once the finite-element problem is solved for Φj , the corresponding nodal velocities uj and vj are
determined by applying the velocity-potential definition (1) in weighted-integral form.∫∫

u Wi dx dy =

∫∫
∂Φ

∂x
Wi dx dy∫∫

v Wi dx dy =

∫∫
∂Φ

∂y
Wi dx dy

(82)

The u, v,Φx,Φy inside the integrals above are approximated using the bilinear interpolation as
usual. Carrying out the integrations gives the following linear systems for uj and vj .

Mij uj = bui

Mij vj = bvi
(83)

Mij ≡
∫∫

Nj Wi dx dy (84)

bui ≡
∑
j Φj

∫∫
Nxj

Wi dx dy

bvi ≡
∑
j Φj

∫∫
Nyj

Wi dx dy
(85)

The node velocities are obtained from (83), by direct solution, via LU-factorization of the mass
matrix Mij and its back-substitution with the bi vectors.

ui = M−1
ij bui

vi = M−1
ij bvi

(86)
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Since Mij depends only on the grid geometry, the LU-factorization which is the most expensive
part of this calculation needs to be performed only once for any given grid. The velocities for any
solution on that grid can then be obtained from the relatively fast back-substitution operations (86).
Alternatively, the linear systems (83) can be solved iteratively.

3.9 Surface Velocity Calculation

One feature of equations (86) is that they make the velocity at one grid point depend on the
potential at all the grid nodes (however weakly for distant points). This is inconsequential for
post-processing, but it’s not practical if the node velocities are needed in the equation residuals
themselves. One example is when the boundary layer equations are solved in a fully coupled manner
with the full potential equation, and the boundary-layer equation residuals are functions of the edge
velocity

ue = ŝw · ∇Φ (87)

ŝw = sx x̂ + sy ŷ (88)

where ŝw is the body-surface tangential unit vector. In this case we define the nodal edge velocity
uei

along the surface, and compute them by expressing (87) in a weighted-integral form,∫
ue W̃i ds =

∫
∂Φ

∂s
W̃i ds (89)

which is a one-dimensional version of equations (82), with W̃i being a one-dimensional “tent”
function of arc length along the surface, centered on node i. Equivalently, W̃i is the union of the
two Ñ functions associated with that node on the adjacent elements.

Substituting the interpolated expressions for ue and ∂Φ/∂s in (82) using the one-dimensional bi-
linear functions Ñj , and rearranging, gives the equivalent defining residual.

Rui ≡
∑
j uej

∫
Ñj W̃i ds −

∑
j Φj

∫
Ñsj W̃i ds = 0 (90)

When the full-potential equation is solved together with the integral boundary layer equations in a
full-coupled manner, the nodal uei

become additional unknowns in the problem, and (90) become
their corresponding additional residuals.

3.10 Pressure And Overall Force Calculation

The node pressure and pressure coefficient values are obtained directly from the isentropic pressure-
velocity relation.

pi = p∞

[
1 +

γ−1

2
M2
∞

(
1− u2

i + v2
i

V 2
∞

)]γ/(γ−1)

(91)

Cpi =
2

γM2
∞

(
pi
p∞
− 1

)
(92)

The overall forces and moment are then obtained by integration of these components around the
body perimeter, performed counterclockwise.

Cx =
1

c

∮
body
−Cp dy (93)
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Cy =
1

c

∮
body

Cp dx (94)

Cm =
1

c2

∮
body
−Cp (x dx+ y dy) (95)

The pressure-drag coefficient and lift coefficient are the force components along and normal to the
freestream direction.

CDp = Cx cosα + Cy sinα (96)

CL = Cy cosα − Cx sinα (97)

4 Boundary Layer Formulation

4.1 Integral Boundary Layer Equations

In XFOIL7, the boundary layer evolution is governed by the integral boundary layer equations,

dθ

ds
=

cf
2
−
(
H + 2−M2

e

) θ

ue

due

ds
(98)

θ

H∗
dH∗

ds
=

2cD
H∗
− cf

2
+

(
H − 1− 2H∗∗

H∗

)
θ

ue

due

ds
(99)

which are the standard von Karman momentum equation and the kinetic energy shape parameter
equation. In laminar portions we have the en envelope growth or amplification equation,

dñ

ds
=

1

θ
Fn(Hk, Reθ) (100)

where Fn is the amplification function which predicts the growth of TS wave amplitude growth.
The transition point is the s location where the N-factor variable ñ(s) reaches a specified ncrit value,
and is where the changeover from laminar to turbulent correlation functions is made.

In turbulent portions we have the shear lag equation

δ

Cτ

dCτ
ds

= KC

(
C1/2
τEQ
− C1/2

τ

)
+ U ′EQ −

(
δ

ue

due

ds

)
(101)

which captures the relatively slow adjustment of the outer-layer Reynolds shear stress to the fluid’s
local strain rate.

4.2 Variables and Correlations

For coupled viscous/inviscid problems, the primary unknowns are the full-potential field Φ(r), and
the following four boundary layer variables defined along the body surface and trailing wake.

ñ(s) or C1/2
τ (s) , θ(s) , m(s) , ue(s)

From these, the following secondary variables are defined.

T = 1 +
γ−1

2
M2
∞

(
1− u2

e

V 2
∞

)
(102)
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ρe = ρ∞ T 1/(γ−1) (103)

µe =
ρ∞V∞`ref

Re∞
T 3/2 1+TS

T +TS
; TS = 110 K/T∞ (104)

M2
e = M2

∞
u2

e

V 2
∞
T −1 (105)

δ∗ =
m

ρeue
(106)

Reθ =
ρeueθ

µe
(107)

H =
δ∗

θ
(108)

Hk = H̃k(H,Me) (109)

H∗ = H̃∗(H,Me) (110)

H∗∗ = H̃∗∗(H,Me) (111)

cf = c̃f (H,Reθ,Me) (112)

cD = c̃D(H,Reθ,Me, C
1/2
τ ) (113)

δ = δ̃(Hk, θ) (114)

C1/2
τEQ

= C̃1/2
τEQ

(Hk, Reθ,Me) (115)

U ′EQ = Ũ ′EQ(Hk, Reθ) (116)

The functions in definitions (109)–(116) are correlations obtained from assumed profile families
u(n)/ue, and have laminar and turbulent versions. For the laminar correlations we use the Falkner-
Skan profiles, and for the turbulent correlations profiles we use the Coles log layer plus wake
layer composite profile. Minor modifications are performed for strongly separated profiles, mainly
to limit the magnitude of the reverse velocities. The assumed density profile ρ(n)/ρe used to
construct the correlations is based on the Crocco-Busemann enthalpy profile, together with the
usual approximation of a constant static pressure across the boundary layer. An adiabatic wall
is also assumed. The G-beta equilibrium flow concept of Clauser is also used to construct the
dissipation correlation function in (113). Finally, normalized pressure gradient function in (116) is
obtained by applying the lag equation (which itself follows from the shear stress transport model
of Bradshaw) to the G-beta equilibrium flow case.

4.3 Discretization

4.3.1 Equations

All boundary layer variables are defined at the surface nodes. We then define convenient variable
averages over a node interval i−1 . . . i along the surface.

( )a ≡ 1
2

[
( )i + ( )i−1

]
(117)

The equations are put into fractional differential residual form, for example

dθ

θ
− s

θ

cf
2

ds

s
+
(
H + 2−M2

e

) due

ue
= 0 (118)
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and then integrated over each interval. This gives the following discrete residuals.

Rθi ≡ ln
θi
θi−1

−
(
s

θ

cf
2

)
a

ln
si
si−1

+
(
Ha + 2−M2

a

)
ln

uei

uei−1

= 0 (119)

RHi ≡ ln
H∗i
H∗i−1

−
[(
s

θ

cf
2

)
a
−
(
s

θ

2cD
H∗

)
a

]
ln

si
si−1

+

(
Ha − 1− 2H∗∗a

H∗a

)
ln

uei

uei−1

= 0 (120)

Rτi ≡ ln
Cτi
Cτi−1

− KC

[(
C1/2
τEQ

)
a
−
(
C1/2
τ

)
a

] si−si−1

θa
−
(
U ′EQ

)
a

si−si−1

θa
+ ln

uei

uei−1

= 0 (121)

Rni ≡ ñi − ñi−1 −
si−si−1

θa
Fn(Hka , Reθa) = 0 (122)

The edge velocity variable uei
is governed by the residual Rui , given earlier in equation (90).

In equations (119) and (120), each of the variable combinations

s

θ

cf
2

,
s

θ

2cD
H∗

is averaged as a group as indicated. The reason is that these groups always asymptote to a constant
value towards the leading edge or stagnation point at s= 0 for any self-similar flow (e.g. Blasius,
stagnation point, etc.), while cf and cD are always singular there. Hence, the grouped averaging
gives dramatically better accuracy than simply averaging s, θ, cf , cD individually.

4.3.2 Upwinding

As defined above, the governing equations are equivalent to two-point central (or “box”) differenc-
ing, and are second-order accurate. Unfortunately this also makes them sensitive to oscillations
in cases where the grid node spacing is too coarse to resolve sharp gradients in the differenced
variables. This problem is most severe in the shape parameter equation (99) is stiff, in that which
evolves H∗(s) with a small length scale which is comparable to θ/cf , which for turbulent flow can
easily be much smaller than a practical grid spacing. An undershoot in H∗ can easily result in
H < 1, for which all the profile correlations are not defined, resulting in a solution failure.

The problem is resolved by replacing the cf and cD group averages with upwinded averages which
bias the downstream station more. Specifically, we redefine(

s

θ

cf
2

)
a

= χ

(
s

θ

cf
2

)
i−1

+ (1−χ)

(
s

θ

cf
2

)
i

(123)

χ = 0.5 . . . 1 (124)

where the upwinding parameter χ can take on any value from 0.5 to 1 as indicated. Choosing
χ= 0.5 recovers the simple average with best accuracy. Choosing χ> 0.5 progressively increases
the damping of oscillations while decreasing accuracy. The limiting case χ = 1 is equivalent to
backward Euler, which is extremely stable but also least accurate. In the actual implementation,
χ is defined locally by the heuristic relation

χ = 1 − 1

2
exp

−(ln
Hki
−1

Hki−1
−1

)2
1

H2
ki

 (125)

which introduces upwinding only where Hki
−1 starts to significantly differ from Hki−1

−1, which
indicates that a sawtooth oscillation is present.

The shear lag equation (101) is also stiff and is susceptible to oscillations in the C1/2
τ variable. Here

the problem is solved by upwinded averaging of C1/2
τEQ

and C1/2
τ in the corresponding residual (121).

15



4.3.3 Initial Conditions

All the boundary layer equations require some initial condition at the first point i=1. We also note
that over the first interval from the leading edge or stagnation point, at i=2, we have si−1 = s1 = 0,
and hence the equations must be modified to avoid the logarithmic singularities. Both issues are
resolved by making the assumption that self-similar flow is present over the first interval. Based
on Falkner-Skan theory, this assumption is equivalent to assuming that the velocity varies in a
power-law manner over the first interval.

ue(s) = Csa (126)

The exponent a can be either assumed depending on the type of flow, or computed from the
next-downstream interval.

a =



0 , flat-plate leading edge assumed

1 , stagnation point leading edge assumed

lnue3/ue2

ln s3/s2
, defined from downstream interval

(127)

In residuals (119) and (120) we then replace the ratio logarithms with the following values,

ln
si
si−1

= 1 (128)

ln
uei

uei−1

= a (129)

ln
θi
θi−1

=
1−a

2
(130)

ln
H∗i
H∗i−1

= 0 (131)

and also take the averages from the i=2 station only.(
s

θ

cf
2

)
a

=

(
s

θ

cf
2

)
2

(132)

Ha = H2 , etc. (133)

These changes in effect convert the differential equations into algebraic relations, which then serve
as implicit initial conditions on the initial θ and H∗ values at i=2.

For the first interval, we also replace the amplification equation residual (122) with the simple
initial condition

ñ2 = 0 (134)

which reasonably assumes that no amplification has occurred over the first interval.

The shear lag equation residual (121) is implemented only after transition, and hence requires an
initial condition at the transition location str. At this location we impose the initial condition

C1/2
τ = K C̃1/2

τEQ
(Hktr , Reθtr ,Metr) (135)

K(Hktr) = 1.8 exp

( −3.3

Hk−1

)
(136)
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where the K is scaling function calibrated to obtain observed pressure gradients in a separation
bubble immediately downstream of transition. This has a strong effect on bubble losses and on the
bubble’s resistance to bursting, which is dominated by the value of cD and hence of Cτ there. In
attached flow, K has little or no effect on the solution, since the lag equation (121) quickly decays
any influence of the initial value on the downstream C1/2

τ (s) evolution.

4.3.4 Transition Point Determination

If free transition is chosen, the transition point location str is determined by applying residual (122)
to the subinterval si−1 · · · str, and replacing ñi with the specified ncrit parameter. We then have

str = si−1 + θa
ncrit− ñi−1

Fn(Hka , Reθa)
(137)

which is still an implicit equation for str, since the sub-interval average θa depends on θtr, which
itself depends on str.

θtr =
si−str

si−si−1

θi−1 +
str−si−1

si−si−1

θi (138)

θa = 1
2 (θi−1 + θtr) (139)

The Hka , Reθa function arguments can also be weighted averages over the sub-interval, although in
practice the fully upwinded arguments

Hka = Hki−1
(140)

Reθa = Reθi−1
(141)

give the most stable solution behavior, especially on coarse grids.

If forced transition is chosen, the transition point location str is explicitly prescribed, and equa-
tion (138) is not used. In practice, it is preferable to always compute a candidate str from equa-
tion (138), and use this as the actual transition location if it falls upstream of the specified forced-
transition location. This prevents the formation of a massive laminar separation zone and likely
solution failure if separation occurs upstream of the forced-transition location.

4.4 Coupled Viscous/Inviscid Solution

The viscous/inviscid problem augments the full-potential problem by the addition of the four bound-
ary layer variables and the four associated residuals for each surface and wake point. The viscous
variables and residuals can be conveniently grouped into the vectors

υi ≡
{
ñi θi mi uei

}T

Rυi ≡
{
Rni Rθi RHi Rui

}T
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where ñi and Rni would be replaced by C1/2
τi

and RCi in turbulent regions. The overall residual
vector now includes the viscous residuals,

~R(Φj , υj , gl) ≡



RΦ
i

Rυi

Rgk


= 0 (142)

and the Newton iteration system now has the following form.

RΦ
i

Rυi

Rgk



n

+



Aij Bik Cil

Dij Eik Fil

Gkj Hkl Kkl



n

δΦj

δυk

δgl


= 0 (143)

This matrix subdivision is conceptually useful, but in practice a smaller matrix bandwith is pro-
duced if the viscous residual rows and viscous variable columns are interspersed with the potential
residual rows and potential variable columns. The resulting matrix will then again have a four-block
structure, as indicated by the double lines in equation (143), and will also be faster to solve.
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