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Outline

LabDF Tutorial: Investigating CFD Methods with DEMOFLOW

• Nozzle Flow

• Conservation Equations

• Grids

• Schemes
• Explicit Runge-Kutta with Roe flux
• Explicit Runge-Kutta with Jameson flux
• Implicit Euler with Roe flux
• Implicit Euler with Jameson flux

• Boundary Conditions

• Convergence to steady state
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Introduction & Objectives

Objectives:

• compute solutions to quasi-1D Euler eqs using 4 different schemes
with several different parameter settings,

• compare computed results with exact solution & draw conclusions
about effect of varying these parameters.

In particular you are to:

• Test the philosophy of time marching to obtain steady flow solutions

• Gain practical experience with time-integration methods

• Illustrate effects of mesh refinement and artificial viscosity

• Understand better the stability limits of the various schemes.
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Nozzle Experiment
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Convergent-Divergent Nozzle Flow

• flow subsonic at
inlet, can reach
sonic speed at
throat, return to
subsonic speed
across shock,
depending on exit
pressure

• exit pressure ( or
velocity)
determines flow
downstream of
throat (T),
subsonic or mixed
supersonic-subsonic
with shock

• Upstream of shock
flow given by
subsonic-supersonic
isentropic eq.,
downstream by
subsonic eq.
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Description of Test Case

• Solve unsteady quasi-1D Euler equations for a steady flow through a
convergent-divergent nozzle (flow properties vary only with the coordinate
x along the nozzle)

• Flow is driven by fixed pressure ratio between exit &inlet, invariant with
time

• Computing case with shock wave standing inside the nozzle illustrates

well:

1. conservation form of the governing equations capturing the shock wave
correctly

2. efficiency of large time steps with implicit time integration to reach steady
state

3. role of added dissipation to obtain a quality solution
4. effect of grid size on accuracy.

• important case because it illustrates the technique of capturing a steady
shock within numerical solution that marches forward in time until steady
solution obtained
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Exact solution

• exact solution determined by
isentropic flow eqs & shock
jump conditions

• user specifies x location of
shock & code determines exact
solution upstream &
downstream of shock, pressure
(or velocity) at exit
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The CFD Approach

1. Study physical flow

2. Construct mathematical problem
• analyze partial differential eqns
• choose boundary conditions

3. Formulate numerical problem
• construct a mesh
• time differencing
• space differencing
• initial conditions
• boundary conditions
• solve difference eqns, stability ?
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Quasi-1D Euler Equations
−ρ V A + (ρ + dρ)(V + dV )(A + dA) = 0

d(ρ V A) = 0

−ρV 2 A+(ρ+dρ)(V +dV )2(A+dA) = pA−(p+dp)(A+dA)+p dA

d(ρV 2 A) = −A dp

∂U

∂t
+
∂F

∂x
= G

U = A

 ρ
ρu

ρ(e + u2/2)

 , F = A

 ρu

ρu2 + p

ρ(e + u2/2)u + pu

 G =

 0

p ∂A
∂x
0


and A denotes the nozzle area

A(x) = 1− 4(1− Athroat)x(1− x), x ∈ [0, L]
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Characteristic Variables

Ut + Fx = G

B = ∂F/∂U
Ut + B Ux = G

B can be diagonalized

∂tŴ + Λ∂xŴ = −H̃

In Riemann variables
wk , k = 1, 2, 3 reflects best
physics of flow, used in BCs

Riemann variables

Elements Ŵ = (w1,w2,w3)

are Riemann variables or

characteristic variables.

w1 =
p

ργ

w2 = u +
2c

γ − 1

w3 = u − 2c

γ − 1

Characteristic lines

wj propagate along three

characteristic lines

C0,C+,C− given by

C0 :
dx

dt
= u

C+ :
dx

dt
= u + c

C− :
dx

dt
= u − c

When H̃ is zeroRiemann
variables constant along
characteristic lines - Riemann
invariants.
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Construct Grid
• Equi-spaced mesh tn = n∆t, xj = j∆x
• Space Discretization: Jameson added scalar dissipationflux, or Roe-MUSCL

matrix limited
• Time integration: explicit Runge-Kutta or implicit Euler scheme.
• Boundary conditions at inlet/outlet implemented in characteristic variables
• ‘ghost’ cells are used
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Finite-Volume Discretization

Semi-discrete formulation
d
dt

Uj (t) =

− 1
∆x

(
F̂n

j+1/2 − F̂n
j−1/2 + Gn

j

)
Define residual Rn

j =

− 1
∆x

(
F̂n

j+1/2 − F̂n
j−1/2 + Gn

j

)
where numerical flux
F̂n

j+ 1
2

= 1
2

(Fn
j+1 + Fn

j )− D̂n

j+ 1
2

Generic dissipation flux function
D̂n

j+ 1
2

specifies particular spatial

discretization scheme: Jameson or
Roe.

Time method: Implicit forward Euler
Un+1

j
−Un

j
∆t

=

− 1
∆x

(
F̂n+1

j+1/2
− F̂n+1

j−1/2
+ Gn

j

)
Taking ∆Un

j = Un+1 − Un , use

linearization[
I

∆t
+ 1

∆x
(An

j+1/2 −A
n
j−1/2)

]
∆U =

− 1
∆x

(
F̂n

j+1/2 − F̂n
j−1/2 + Gn

j

)
linear system 3N unknowns
∆Un

j , j = 1 · · ·N. Coefficient matrix

block tri-diagonal, solve for ∆Un
j by

Gaussian elimination
Un+1 = Un + ∆Un advances solution
one step from tn to tn+1. von
Neumann stability analysis
unconditionally stable, ∆t can be
arbitrarily large

Time method: Explicit multistage
Runge-Kutta
DEMOFLOW uses five stage scheme
with coefficients

α1 α2 α3 α4 α5
0.0695 0.1602 0.2898 0.5060 1

CFL limit CFL = 4
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Roe Matrix-limited Flux Scheme

D̂n
j+ 1

2
= −1

2
Sj+ 1

2
Ψj+ 1

2
S−1

j+ 1
2

(Un
j+1 −Un

j )

where
Ψ = diag(|λi |ψi )

• uses MUSCL variable interpolation by means of an
eigen-analysis, decomposes flux difference into sum of left-
and right-running wave contributions

• ψi functions of flux limiters φi and

• λi is i th eigenvalue of the matrix A
• limiting MUSCL interpolation this way ensures correct amount

of dissipation given to each eigen-component
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Jameson flux approximation
Jameson D̂n

j+ 1
2

: in ad hoc manner adds second-order diffusion term activated near

discontinuities to become 1st order. To achieve 2nd order everywhere else, it is
switched off by sensor which turns on a fourth-order dissipation term

Switch to toggle between
dissipation modes
monitor pressure variation
at each node using the
normalized second difference
µj =

|pj+1−2pj +pj−1|
pj+1+2pj +pj−1

O(∆x2), except in strong
pressure gradients Apply
smoothing and obtain
υj = 1

2
µj + 1

4
(µj−1 + µj+1)

Second & fourth order
coefficients
Apply sensor υj to switch
between dissipative modes.
Each mode is associated with
a coefficient which depends
on sensor υj , so that 4th
order dissipation
automatically switched off
near shocks

ε
(2)
j = k(2)υj

ε
(4)
j = max(0, k(4) − ε(2)

j )

where constants k(2) and
k(4), in two variable

coefficients ε
(2)
j , ε

(4)
j specified

by user and called Vis2 and
Vis4 in DEMOFLOW

Scaling
Scale numerical dissipation
by spectral radius of
B = ∂F/∂U simplify to
λj = Aj (|uj |+ cj ) where cj

is local speed of sound.
Average for final scaling
factor rj+1/2 = 1

2
(λj + λj+1)

Dissipation flux

D̂n
j+ 1

2

= rj+ 1
2

[ ε
(2)
j (Uj+1 −

Uj ) − ε
(4)
j (Uj+2 − 3Uj+1 +

3Uj − Uj−1) ]
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Time-Step Size

• Maximum time step, ∆t for explicit solution calculated using
Courant-Friedrichs-Lewy (CFL) condition

∆t = CFL
∆xmin

|λmax |

where min and max are taken over all cells

• Note that not only the cell size but also the local wave velocities are
involved, so it is not possible to choose the time-step in advance

• Motivation for implicit schemes is to relieve severe limitation of CFL
condition

• Explicit schemes typically have a CFL limit of 1 while implicit schemes
have values in the hundreds.

• Notice that maximum time step ∆t can become very small as the mesh
becomes finer.

• Time-marching approach requires stepping the solution forward in time
until all disturbances have been expelled through the boundaries, and the
flow becomes steady. Thus it is important to be able to reach the
steady-state flow in a minimum number of time steps
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Boundary Conditions
Characteristic lines and boundary conditions
At inlet lines C0 and C+ have slope u and c + u into nozzle so impose BC.
Third characteristic has a slope u − c whose sign depends on the inlet Mach
number. If supersonic, information is transported nto flow so impose BC; if
subsonic value of w3 can change so no BC imposed Similar at outlet
Inflow Boundary Conditions (always subsonic)
Two in-going characteristics and one outgoing one. Use Riemann invariants to
determine pressure, density and velocity

Outflow Boundary Conditions

• For supersonic outflow all characteristics are going out from the domain
and physical boundary conditions are neither required nor allowed. Values
of the flow variables at the boundary (i.e. numerical boundary conditions)
are obtained by linear extrapolation of the Riemann invariants from the
interior field points.

• For subsonic outflow one characteristic is in-going so one variable should
be set, e.g. the pressure is set to the exit pressure p(L,T ) = pexit . The
other two numerical boundary conditions are obtained by linear
extrapolation of the Riemann invariants from the interior field points.
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Physical Boundary Conditions

Subsonic Supersonic
Inlet Two conditions Three conditions

w1 and w2 given w1, w2 and w3 given
Outlet One condition Zero conditions

w3 given
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Numerical boundary conditions

• Numerical schemes require all variables be known at boundaries in order
to compute

• Numerical boundary conditions consistent with physical properties &
compatible with numerical scheme

Subsonic Supersonic
Inlet Physical conditions: w1, w2 Physical conditions: w1, w2, w3

Numerical conditions: w3 Numerical conditions: none
Outlet Physical conditions: w3 Physical conditions: none

Numerical conditions: w1, w2 Numerical conditions: w1, w2, w3

First-order extrapolation Riemann variables W n
M

where M is the ‘ghost’ cell, i.e. as W n
M = 2W n

M−1 −W n
M−2

Reconstitution

After the extrapolation of Riemann variables, the conservation variables Un
M are

determined.
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Running DEMOFLOW

Initialization of Flowfield

• Code initializes the flowfield by linearly interpolating
between the exact values at the inlet and at the exit
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‘Convergence in time’ to steady state
Flow variables change over time step

Un+1
j −Un

j

∆t
= Rn

j Steady State is Un+1
j → Un

j is

reached when Rn
j → 0

L2 residuals using L2 norm ∣∣∣(R`
)

L2

∣∣∣ =
tref

U`
ref

√√√√√ 1

JM

JM∑
j=1

(
R`
)2

j

L∞ residuals using L∞ norm ∣∣∣∣(R`
)

L∞

∣∣∣∣ =
tref

U`
ref

sup
j=1,JM

∣∣∣∣(R`
)

j

∣∣∣∣
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