A User’s Guide to LINDOP V2.50

Mark Drela
MIT Department of Aeronautics and Astronautics
June 1996

This document describes the use of the design/optimization driver LINDOP . Refer to the
“LINDOP Optimization Procedures” theory document for more details.

Contents

1 Foreword

2 Input/Output files

3 LINDOP execution

4 Top-level menu

5 Design/optimization options

6 Design-parameter modification

7 Singular System Handling

8 Built-In Constraints

9 Parameter change implementation
10 Optimization search directions

11 Parameter scaling

12 Optimization summary

13 User-Defined Parameters and Functions

14 General Hints
14.1 Single vs Multiple operating points L oL
14.2 Few vs Many design modes

14.3 Free vs Fixed transition

10

11

14

15

16

1 Foreword

LINDOP is an attempt at making optimization more user-friendly and accessible to the practicing
airfoil designer, and is still evolving. It is not intended to replace more traditional inverse and
geometry-manipulation techniques, but is geared to be another item in the design toolbox. The
experience with LINDOP so far has been that it is at its best in design problems where conflicting
requirements at multiple operating points do not easily yield to intuitive redesign, and/or the
possible design changes are too numerous to permit efficient numerical cut-and-try.

LINDOP in principle makes no assumptions about the analysis code with which it interacts.
It only requires geometry and parameter sensitivities for its operations. Currently, the sensitivity
file i/o routines are matched with those in the MSES multielement airfoil code.

Setting up a LINDOP optimization case requires some planning. The operating points over
which the optimization is to be performed must be carefully chosen, else the result will not be what
was intended. The objective function and all constraints must be quantitatively defined. Vague
goals such as “best L/D with reasonable spar depth” are useless by themselves. Nevertheless,
LINDOP can be used to rapidly investigate the effects of “tweaking” the design and thus help in
deciding what an effective objective function and/or constraints might be.

More often than not, the target operating points, objective function, and/or the constraints
will have to be modified during the optimization process. Any optimizer left free to roam has an
uncanny ability to find flaws and loopholes in the optimization problem presented to it. Any such
deviation from the intended path must be nipped in the bud before the designer is thoroughly
embarrassed!

Even with frequent reformulation of the optimization problem, an airfoil produced by LIN-
DOP will most likely need to be “cleaned up” by the more traditional inverse and direct manipu-
lation methods to correct minor geometric and aerodynamic defects. Typical minor defects might
be details which were invisible to the objective function and/or constraints for whatever reason:
an impractically thin trailing edge, a wiggle at the foot of the shock or at a separation bubble, an
overly small leading edge radius, etc.

* * *

This is primarily a reference manual, and will be difficult to follow when read for the first time.
The suggested approach is to simply run MSES and LINDOP on a simple optimization case,
such as the RAE 2822 5-point case provided. The various menu options of LINDOP can then be
explored using this document as a guide.

2 Input/Output files

LINDOP works with the files listed below.

file type source purpose

points.xxx input user specification of sensx.xxx_nn files to be read
usrpar.Xxxx input/output user/LINDOP current values of user-defined parameters
sensx.xxxnn input MSES parameter-sensitivity data

linpar.xxx input/output LINDOP save file for LINDOP runtime parameters
hessian.xxx input/output LINDOP latest Hessian estimate

ophist.xxx input/output LINDOP optmization history of all design parameters
params.Xxx input/output LINDOP new parameter values to be imposed in MSES
blade.xxx output LINDOP modified airfoil geometry file

The sensx.xxxnn files are required, but will be generated automatically by MSES if any geometry
and/or position modes are selected, as described in the MSES User Guide. The usrpar.xxx file
is required only if a user-defined objective function and/or constraint is to be used (described
later). The remaining files are optional or will be generated at some point by LINDOP . For most
optimization problems using built-in optimization features, no input files will need to be generated
by the user.

3 LINDOP execution

LINDOP is executed with the command
% lindop xxx yyy

where the first argument xxx is the case extension for all input and output files as with MSES .
The second argument yyy, which is optional, is the case extension only for the output files. It can
be used whenever the input files are not to be overwritten, although this is rarely necessary.

LINDOP first reads design-parameter sensitivity data from a sequence of sensitivity files
sensx.xxx_nn, with the numeric extensions “nn” determined by one of three ways, listed below in
order of precedence.

1. The list of number extensions to be read can be specified in file points.xxx in the following
format.

4
6
11

If this file exists, LINDOP will in this case try to read sensx.xxx_04, sensx.xxx_06, etc.

2. If points.xxx is not found, LINDOP will try to read the incremental sequence sensx.xxx 01,
sensx.xxx 02 ...up to its array limits.

3. If neither of the above two alternatives gives a successful file read for the first file, LIN-
DOP will try to read the single file sensx.xxx with no “nn” extension.

Note that any individual sensx.xxx nn file can be read alone by specifying its full suffix, as in:
% lindop xxx_03

This works because the first two rules will look for points.xxx 03 or sensx.xxx 03 nn and fail,
thus defaulting to the third rule.

The sensitivity dump files are created by MSES , MPOLAR , or related variants, if any of
the geometry modes (21— ...) or element position modes (31— ...) are specified as global variables
in mses.xxx. MISES creates a single sensx.xxx file upon termination, while MPOLAR creates
one sensx.xxx.nn file for each marked point in its sweep, automatically appending the integer
trailer _-nn. The points which are to have the sensx.xxx nn files generated are marked by a non-
zero integer following the a value in the alfas.xxx input file as described in the MSES reference
manual.

LINDOP will also read the files linpar.xxx, usrpar.xxx, ophist.xxx, and hessian.xxx if
they exist. linpar.xxx serves the same function as gridpar.xxx does for MSET | i.e. it contains
previously-set parameters so they don’t have to be remembered and laboriously entered by the
user every time LINDOP is executed. ophist.xxx contains a history of optimization steps from
previous LINDOP invocations, and hessian.xxx contains the latest approximate Hessian matrix
(in eigenvector-factored form) of the current objective function. If the current LINDOP invocation
will be used to generate another optimization step, the step information must be appended to
ophist.xxx at the user prompt.

4 Top-level menu

LINDOP first reads all the input files, does some initializations, and lists the available operating
points and design parameters. It then goes into its top-level menu:

1 Design/optimization options

2 Write modified parameters to params.xxx files
3 Write modified-airfoil coordinate file

4 Display operating points

5 Sensitivity display options

6 Gradient scaling options

7 Save current settings to linpar.xxx

8 Plot options

9 Toggle CD-CL / CD-Mach sweep type
10 Toggle geometry mode linking among points
11 Toggle position mode linking among points
12 Read parameters from params.xxx files
13 Change airfoil name
14 Restart

Most optimization work will require using only Options 1,2,14, repeated in that sequence. Option
14 reads all the input files again and repeats all the initialization procedures. It has the same effect
as halting LINDOP and executing it anew.

The first time LINDOP is executed for a given design case, several of the other options will
need to be invoked to perform the necessary case setup operations. These will be mentioned when
they become relevant later in this manual.

5 Design/optimization options

The primary design/optimization option menu is brought up with top-level Option 1. If a linpar.xxx
file was not read, the user will be prompted for:

e Target point. (integer) This selects the operating point to be “worked on”. A zero means
all points are targets (discussed later).

e Target side. (integer) This selects the side of the airfoil to be worked on. The sides are
numbered 1, 2, 3 ... from top to bottom of the multielement configuration. A negative side
number means that that side and its partner on the same element are the target. A zero
means all sides are targets.

e Target variable. (character: C M H N) This specifies the target variable on the airfoil sur-
faces. The four characters correspond to C), (pressure coefficient), pu2f (momentum defect,
or accumulated drag), Hy (kinematic shape parameter), i (amplification variable for e" tran-
sition criterion). Version 2.5 only uses C), and Hy, which reduces disk storage.

The selected targets can be changed anytime from the design/optimization menu which comes
up next:

ariable target select
xternal reference data overlay

coordinate-type change
ardcopy current plot

M odify target => parameters A ctivate/freeze parameters
0 ptimize on line => parameters I mpose/remove constraints
D irection for line descent C lear active parameters

Q uvasi-Newton toggle K eyboard parameter input

L ift coefficient spec => alphas W eights for points

P oint target select B lowup

S ide target select R eset plot scaling

\ X

E H

The central goal addressed by this menu is the generation of changes in any or all of the available
design parameters. The built-in parameters implemented are listed below, along with the associated
MSES global-variable indices.

Parameter global variable

MODk 21,22, ... element geometry deformation mode amplitude
POSk 31,32, ... element position mode amplitude

ALFA 5 angle of attack (one per point)

MACH 15 Mach number (one per point)

LNRE 10 and 15 In(Reynolds number) (one per point)

A parameter is available to LINDOP only if it was specified as a global variable (in the first line
of mses.xxx) for the MSES or MPOLAR run which which generated the sensx.xxx sensitivity

dump file. For the Reynolds number parameter LNRE to be available, both the stagnation Reynolds
number (10) and mass flow (15) must be specified as global variables.

If all the mdat . xxx_nn point files already exist and are converged, it takes very little computation
to add any of the above parameter(s) to the available set — the parameter and its global equation
need to be added to all the mses.xxx_nn point input files, and one Newton additional iteration
needs to be executed for each point.

The MODk and POSk parameters are normally the same for all operating points — i.e. they
are linked across the points. They can be chosen to be independent among the points, however,
by using Options 10,11 at top level. One situation where the element position mode parameters
POSk would not be linked is in optimizing an airfoil with a cruise flap at a number of operating
points. The flap deflection would be described by a flap position mode, whose amplitude could be
optimized indepently for each operating point. Unlinking the geometry mode parameters MODk
will rarely be necessary, except perhaps in the unlikely problem of multi-point optimization of a
variable-shape airfoil.

In addition to the built-in parameters listed above, the user can also define and modify arbitrary
parameters to be used in an optimization process. This is described in a later section.

6 Design-parameter modification

Three basic options are available for generating the parameter changes.

1) Direct parameter entry
After specifying option K, the user can select which parameters to modify from a sub-menu. Also,
option L can be used to generate changes in any or all the ALFAs indirectly via a specified Cf,.

In general, anytime a point number or mode number is requested, specifying 0 will execute the
action for all points or modes. For example, when the menu and prompt invoked with option K
appear:

A 1pha

G eometry modes for all points
P osition modes for all points
U ser parameters

Specify parameter-type to modify: G

Enter k, dModk (<cr> if no more)...
entering
0 0.001

will set all the geometry deformation mode amplitudes to 0.001 . This convention is used for
essentially all the user inputs. Also, anytime a number or numbers follow a prompt, they are the
default input and do not need to be typed. When option L is issued for point 2, for example:

Set CL for what points (0=all)? :
2
Enter CL 2 : 0.80000

just entering <Return> will take the 0.80000 as input.

2) Least-squares optimization
This inverse-like method, invoked with option M, solves the least-squares problem of minimizing the
objective function

1
F = EZ wn/(f_fspoc)2 ds
with s being the surface arc length. The following rules are used to define F:

e The index n goes over all the points, or just the target point if the latter is specified (select
with option P).

e The integration goes over all the sides, or just the target side if the latter is specified (select
with option S). If a negative target side number is specified, then the integration is over that
side and also its partner on the same element.

e The function f is the target variable (select with option V).

The specified distribution fspec is initially set to the current f, and can be altered in the upper left
box via cursor inputs with option M. This option then finishes with the least-squares minimization,
thus generating the parameter changes. The user can only alter the current target point and the
target side(s), since that is all that is on the screen. If there are multiple target sides, the fspec side
distribution closest to the first cursor input point will be modified. Options P and M will have to
be issued alternately if fgpec is to be modified at more than one operating point.

In executing the least-squares solution, a linear system is set up for only the changes in the
active parameters (select with option A). The remaining inactive parameters are left unchanged.
Any previously-set changes to these “frozen” inactive parameters are essentially forcing terms placed
on the righthand side of the least-squares system. One can thus investigate how a change in one
parameter can be used to offset another. For example, one can find how airfoil shape needs to be
changed in response to a specified Mach number change so as to produce the least impact on the
pressure distributions. This is easily done by first changing the (inactive) Mach number design
parameter with the K option, and then executing a least-squares solution with the unmodified
baseline C), distribution as fgpec-

The linear least-squares system can be augmented with active constraints (select with option
I). The user can always change the active parameters and/or active constraints, and immediately
solve the new resulting system with option M (just hitting <return> three times or clicking outside
the target plot region will retain the existing fipec). The following rules must be observed in the
selection of target sides, active parameters, and constraints:

e The integration must be at least over all sides which have active geometry-deformation and/or
element position modes. If not, then the “uncovered” modes will be nearly unconstrained, and
the linear system will be extremely ill-conditioned, producing enormous parameter changes.
The fix is to specify the sides in question as targets (option S), or to freeze the parameters in
question (option A), and then solve again with option M.

e If ALFA, MACH, or LNRE for any point is an active parameter, that point must be a target
point. If not, then these parameters will likewise be unconstrained and the system solution
may blow up. As before, the fix is to specify the points in question as targets (option P), or
to freeze the parameters in question (option A). Normally, the user can select either one or

all of the points as targets. To effectively select several (but not all) the points, first all the
points are selected as targets, and then the point weights w,, for the unwanted points are set
to zero (option W).

e An alternative means to constrain ALFA or MACH (but not both) for any point is to impose
a Cp, constraint for that point (option I). Note, however, that C7, can still be imposed as a
constraint whether or not ALFA for that point is an active variable. It is generally preferable
to impose a C, constraint and activate ALFA together for any point, since this usually gives
a better fit of f to fepec-

e Constraints must not be redundant or nearly-redundant, else the system for the parameter
changes will be very ill-conditioned. For example, Cj; for any given subsonic airfoil is essen-
tially the same under any normal operating condition. In multi-point optimization problems
it is therefore important to constrain Cjp; for no more than one operating point. Likewise,
local-thickness constraints must be imposed at chordwise locations which are sufficiently far
apart on the airfoil.

3) General optimization line-descent

Option 0 generates changes in the active parameters by performing a line-descent step along a
pre-defined direction. The step is performed in either physical scaled space (Steepest-Descent,
Conjugate Gradient methods), or eigenvector space (Quasi-Newton method). These procedures
are described in the “LINDOP Optimization Procedures” theory document. The design-space
choice is toggled with Option Q. When option 0 is selected, a plot comes up showing the current
and previous objective function values and the derivatives along the current direction. The user is
asked for a step size (e in the theory documentation), the goal being to approach the line-minimum
in as few steps as possible. A parabolic fit to the current and previous function and the current
derivative is displayed with a dotted line, and the step size needed to get to the minimum of this
parabola (if it is convex) is the default input. Of course, no parabola is available for the initial
point on the line, and an estimate for the step size must be made. The linearized response of the
solution is then displayed as a reality check. If deemed reasonable, the optimization step must be
appended to file ophist.xxx (ophist.yyy if yyy is specified) at the prompt if the optimization is
to continue during subsequent cycles.

7 Singular System Handling

Before the least-squares or general-optimization matrix is factored, a check is performed on whether
the matrix is singular. First, if the number of active constraints exceeds the number of active
parameters, the system clearly has no solution, and a message is printed with no further action.
The next checking stage involves examining all the matrix columns — if a column containing
all zeros is found, the design parameter corresponding to that column is unconstrained. Rather
than abort the solution procedure, the diagonal element of that column is replaced with unity,
artificially fixing that parameter. A message is given that the action was taken. If a Lagrange-
multiplier column is all zeros, the associated constraint has no influence, and again a value of unity
is placed on the diagonal, effectively disabling that constraint.

It is possible to specify a problem which passes the first two tests but still has a singular matrix.
In this case the matrix factorization routine will abort and the structure of the offending matrix
is displayed, hopefully giving a clue as to what the problem is. A typical cause encountered in

practice has been using unlinked geometry and/or position modes in conjunction with constraints
(e.g. specified Cr) on points other than the target point. In this case, all the mode parameters for
a point influence the C'f, constraint, giving them non-zero columns. However, the single constraint
can fix at most one parameter, so the remaining ones are really unconstrained and the system is
singular.

The matrix-checking tests will catch all numerically singular problems posed by the user. They
also have the nice benefit of preventing a possible arithmetic fault and program crash. On the other
hand, this checking cannot catch numerically non-singular but ill-conditioned problems, like those
described above. These will not generally cause a program crash, however, and hence they can be
easily corrected and the solution subsequently recomputed.

8 Built-In Constraints

With option I the user can toggle a number of built-in geometric and aerodynamic constraints.
The following constraint options are offered, followed by the selection prompt:

LS left slope | per side index
RS right slope | 1.. 4

LA left angle per element index

|
RA right angle | 1.. 2
CV LE curvature I
TH max thickness |
T1,2 local thickness |
AR area |
ST strain I
EI EI |
HK shape parameter | per location index
CL | per point index
CM | 1.. 6
MC I
RC |
US user constraint | per constraint index
1.. 3

Specify constraint(s),index(s) to toggle:

A slope constraint forces zero slope change at a specified location on one surface. When imposed
at a mode endpoint, this prevents a slope discontinuity from appearing.

An angle constraint is similar to a slope constraint, except that it is associated with an element,
and constrains the difference in angles between the upper and lower surfaces to be a specified value.
It is typically used to control the trailing edge angle.

When most of these constraints is enabled, some constraint parameters will be requested. For
example, entering

T1 2

in response to the prompt will require inputting an imposed thickness for element 2, and the z/c
location of that thickness, with the current values offered as the default:

Enter x/c (element 2): 0.00000
0.4

Baseline local thickness = 0.11892
Enter specified thickness: 0.11892
0.13

This will force element 2 to be 0.13 thick (in same units as the input airfoil coordinates) at its 40%
chord location. Entering

T2 2

will allow specifying the thickness at another z/c location on the same element. If an active-
constraint value (e.g. thickness) needs to be changed, it is necessary to toggle that constraint
twice. The new value will be requested after the constraint is activated again on the second toggle.

The MC and RC constraints force the Mach and Reynolds numbers to be related to the lift
coefficient by

M\/ CL = Mspoc
ReyCr = Rspoc

which in effect automatically adjust M and Re to account for speed (i.e C) variations in level
flight. These constraints are typically imposed in cases where the MISES solutions were performed
with M+/Cp, and/or Rey/C, held fixed (constraints 16,18), and it is desired that they remain fixed
with any design-pararameter perturbation. Naturally, this requires that the MACH and LNRE
parameters be made active. For convenience, this is done by default during LINDOP start-up
for any MSES operating point calculated with the (16) and/or (18) global constraints selected.
A message is printed to notify the user. These defaults are overridden by settings saved in the
linpar.xxx file, and can of course be changed at any time from the option A and option I menus.
The prescribed parameter values Mgpec and Repec can also be changed from the option I menu.

The user-defined constraints will be described later.

9 Parameter change implementation

Once the design parameter changes are generated by one of the three means described above, they
can be implemented in one of two ways, depending on whether MSES or MPOLAR are being
used.

10

1. Write out the modified parameters to files params.xxxnn (or params.yyynn if the yyy
argument is specified) with top-level Option 2. Reconverge all the operating points individ-
ually with MSES | which will read the modified parameters from params.xxx nn for each
point automatically if this file exists. The shell script mseq, described later, is convenient for
executing a sequence of MSES solutions for all the operating points.

2. Write out a modified-airfoil coordinate file with top-level option 3. Use MSET to generate

a new mdat .xxx using the new coordinate file, and recalculate the point sweep with MPO-
LAR .

Method 1 generally takes less CPU time to reconverge, but requires more storage for all the in-
dividual mdat.xxx nn files. If disk storage is not an issue, then Method 1 is recommended. If a
standard polar. listing file with some or all of the _nn operating points is required, executing

% pwrite xxx_01 xxx_02 ...

at anytime will generate such a file. The point case arguments do not need to be consecutive or in
any particular order. Executing

% swrite xxx_01 xxx_02 ...

will generate a standard msweep. Mach sweep listing file. If Method 2 is used with MPOLAR
these files will of course be already generated as a by-product.

It is important to remember that anytime the params.xxx nn file is found during MSES or
MPOLAR startup, the modified parameters in it will be imposed on the solution if possible. A
message is printed to notify the user when this occurs. Note that params.xxx nn also contains the
modified flow parameters «, Cr. My, and Res,. These quantities overwrite ALFAIN, CLIFIN,
MACHIN, and REYNIN specified in mses.xxx. Whether ALFAIN or CLIFIN is used depends on
whether the prescribed-a constraint (5) or the prescribed-C, constraint (6) is selected in mses . xxx.

10 Optimization search directions

One optimization step consists of the generation of design-parameter changes via line-minimization
in LINDOP | followed by a nonlinear MSES or MPOLAR solution recalculation. This is termed
a sub-cycle in the “LINDOP Optimization Procedures” theory document. Several such sub-cycles
are typically executed to drive towards the line-minimum. Once near the line-minimum, a new
sub-cycle sequence is started in a new direction.

The gradient vector gi, and line-minimization direction vector (di, vy in the theory document)
are generated with option D. The user is first asked to select the objective function to be used from
the following menu.

O wuser-defined
1 Sum[w CD 1]
2 Sum[w D/L]
3 Sum[-w CL 1]
4 Sum[w D/ML]

11

Function 1, for example, is defined as

f B Zn Wn,

with the summation always performed over all the available points, no matter what the target point
is at the moment. The weights w,, need to be set first with option W. They are all initialized to
unity, and can be saved in linpar.xxx (linpar.yyy if yyy is specified). Note also that the sum
over points is normalized, so that the weights do not need to add up to unity. User-defined objective
functions (Function 0) are discussed later. If the optimization is to be performed in eigenvector
space X (the default, changed with option Q), the Hessian will be updated by the BFGS algorithm
and its eigenvector decomposition computed (see “LINDOP Optimization Procedures” document).
A typical output might be

Eigenvalues I Eigenvectors for...
L | min|L]| max|L|
0.1000E+01 I -0.2442 0.0802 MOD 01
0.2094E+03 | -0.4343 0.6524 MOD 02
0.1000E+01 I 0.1804 0.4671 MOD 03
0.1000E+01 I 0.1579 0.1064 MOD 04
0.1000E+01 | 0.0048 -0.0233 ALFA 01
0.8344E+00 I 0.6775 0.2777 ALFA 02
0.1000E+01 | -0.0951 0.0274 ALFA 03
negative = 0 max |L| = 0.2094E+03
zero = 0 min |L| = 0.8344E+00 C = 251.0
new min = 0.8344E+00 => new C = 251.0

U pdate hessian
I nitialize hessian to identity
C ancel update

Select operation: U

Selecting the default case U will cause the Hessian update to proceed normally. If some problems are
observed, the Hessian can be re-initialized with I, or the already-existing Hessian can be retained
by canceling the update with C. The most common problem is one or more negative eigenvalues,
which might typically be caused by large constraint-forced parameter changes during the previous
line descent, or by partially descending down a concave-down line-descent path. Positive but very
small eigenvalues can also cause problems. This is indicated by a very large condition number
C = Amax/Amin > 10°, say. C is listed before and after the eigenvalues are “repaired” by an
explicit modification.

The Hessian’s unit eigenvectors associated with the minimum and maximum eigenvalues A are
displayed when the Hessian update is calculated. These are significant in that the min. eigenvector
will undergo the biggest change over the next line descent, while the max. eigenvector will undergo
the smallest change. Each vector’s change is proportional to 1/ VA, and hence the ratio of the two
changes is V/C.

The Hessian update will not be performed if the optimization is chosen to be performed in
scaled space X (toggle with option Q). This is equivalent to using the default identity Hessian.

12

Once the objective function is selected, the constrained -(gradient) vector dj, and current descent
vector vy are calculated, and a number of quantities describing the current line-descent are then
displayed:

initial current
hist.: 4 7

F : 0.00938 0.00926
v.d : 0.00360 0.00090 => v.d/(v.d)_ = 0.25000
d.d : 0.00853 0.00290 => d.d/(d.d)_ = 0.34453
(d-d_).d/(d.d)_ = 0.07900
Gradient-conjugacy parameter: d.d_/d.d = 0.77071
d.do/d.d = 0.89142

If Steepest-Descent is being used, di and vy are the same. With Conjugate-Gradient, they are
different. The “initial” column refers to the initial point in parameter space of the current line-
descent sub-cycle (X l(f in the theory documentation), where the current search direction v,(j was
defined. It is denoted by the ()_ subscript in the display. If the line-descent minimum has been
reached at the “current” location (X ,gﬂ)), the dot product vy - dy, at the current point should be very
small compared to the initial point. In the case above we have 0.0009/0.0036 = 0.25 < 1, which
means that another line-descent step should be performed before a new direction is defined. If
this is not heeded while using Conjugate-Gradient, then the conjugacy of the v sequence might be
corrupted, and optimization rate will suffer subsequently. With Steepest-Descent, there is generally
little consequence of starting a new direction prematurely.

Assuming that we are at the line minimum to within a good tolerance (vy - dj ratio < 0.05,
say), a new search direction vector v,(;“) for the next line-descent can be defined from the following
menu.

Gradient-conjugacy parameter: d.d_/d.d = 0.12512
d.do/d.4d = 0.52131

0 Steepest-Descent

1 Conjugate-Gradient (Fletcher-Reeves)

2 Conjugate-Gradient (Polak-Ribiere)
The new search direction is then set as follows.

Steepest-Descent: Ug+n = di*n
(dk 'dk)@+D 0]

Fletcher-Reeves: o) = e 4

(dy, - dg)o
(d, —dy) -’ 0
(dy; - di,)® k

Polak-Ribiere: vgﬂ) = dzﬂ) +

The Conjugate-Gradient methods assume that the objective function is quadratic, with a line-
descent in any direction being parabolic in shape. The degree to which this assumption is violated is
roughly indicated by the “Gradient-conjugacy parameter” d®-d¢=? /d®.d® (d.d_/d.d above) which
is zero for strictly quadratic functions. If it is greater than 0.2 (according to Powell’s criterion),
it indicates that the conjugacy of the v sequence has been significantly corrupted. The second

13

parameter d? -dV /d?-d® (d.do/d.d above) is a more stringent indicator which checks conjugacy
all the way to the start of the direction sequence. It is provided primarily for information.

The violation of Powell’s criterion can be caused by a convoluted objective-function (evidenced
by a “bumpy” line-descent), strongly non-linear constraints (evidenced by slope lines not being
tangent to the descent curve), or failure to reach a line-minimum to a sufficient tolerance. If the
criterion is repeatedly violated during sucessive line descents, the direction sequence should be
restarted by specifying Steepest-Descent. It should also be restarted if the any of the design pa-
rameters are changed or rescaled, the objective function is changed, or the constraints are modified.

For the very first search direction there is no choice but to use Steepest-Descent, and the user
is not prompted for which method to use.

11 Parameter scaling

The rate of convergence of the optimization process often strongly depends on the relative magni-
tudes of the gradient components in parameter space. Before the first direction vector is defined, it
is highly advisable to set the gradient weights employed internally by LINDOP (a() in the theory
documentation). This is done with top-level option 6, which lists the current scales and allows
them to be changed via a menu:

Perturbation step: 0.01000

___________ changes___________

Parameter scale CL CD Fuser
dMod 1 1.00000 -0.03252 0.000241 0.000000
dMod 2 1.00000 0.06926 0.001057 0.000000
dMod 3 1.00000 0.03955 0.000487 0.000000
dPos 14 1.00000 -0.08261 -0.000989 0.000000
dPos 15 1.00000 0.06020 0.000974 0.000000
dAlfa 1.00000 0.12096 0.002646 0.000000
1 scale geometry modes

2 scale position modes

3 scale alpha, Mach, Re

5 show current scales

6 change perturbation step size

7 enable/disable graphical display

8 change target point

Enter scaling option (O=return to top level):

A parameter “scale” is actually 1/ a?k), which is the actual weight on a parameter’s gradient for de-
termining the change of that parameter in the Steepest-Descent and Conjugate-Gradient methods.
Hence, it is more intuitive to modify this scale rather than a() itself. The Quasi-Newton method
tends to partially compensate for poor scaling.

When a parameter class is selected for rescaling from the menu, each parameter is temporarily
changed by the “perturbation step”, the flowfield response is calculated and displayed, and the
user is given the option to change the parameter’s scale. Both the C, distributions and the Cp

14

X, dir=2

:>X1
Figure 1: Optimization path through two-dimensional parameter space.

polars are good indicators. Besides the baseline and perturbed distributions, each response plot
also shows the envelope of all the responses in a dotted line. This allows one to judge the scale of
the parameter being perturbed relative to the others. Once all the scales are set, they should be
saved in file linpar.xxx so they can be re-used in subsequent LINDOP invocations.

12 Optimization summary

Figure 1 shows an optimization path of two active design parameters Xi, X5, along three line-
minimization directions. The corresponding execution sequence for this process is summarized
below.

% mset xxx_ 01 xxx
% mset xxx_02 XXX

For dir=1, 2,3 ...
For step=1, 2,3 ...
%y mseq mses Xxx
% lindop xxx or Option 14 if LINDOP was not halted
if (dir=1 and step=1) Option 6
Option 1
if (dir=1 and step=1) option I
if (dir=1 and step=1) option A
if (dir=1 and step=1) option W
if (step=1) option D
option 0
Option 0 (optional LINDOP halt)

15

next step
next dir

The two arguments to MSET (first implemented for MSES v 2.3) indicate that the input files
are blade.xxx and gridpar.xxx nn, and the output file is mdat . xxx nn. The counterintuitive order
of the arguments is necessary since the i/o routines for mdat .xxx always take the first argument.
The shell script mseq conveniently executes MSES for all the xxx nn cases. It can also take two
arguments for the starting and finishing points. If there is more than one machine sharing the
network file server, mseq makes it very easy to run MISES in distributed parallel fashion. If there
are ten points, for example, one could execute

% mseq mses xxx 1 5
on one machine, and
% mseq mses xxx 6 10

on another machine, thereby cutting the wall clock time in half.

In a multi-window environment, it is not necessary to stop LINDOP execution to reconverge
the MISES solutions if these are run in separate windows. After the solutions are converged, their
new sensitivity files sensx.xxx nn can be read back into LINDOP with Option 14, which has the
same effect as starting LINDOP anew.

A good case to try out the above procedure on is a simple 5-point RAE 2822 optimization
problem. The necessary modes.rae_nn and appropriate mses.xxxnn files are provided.

13 User-Defined Parameters and Functions

The parameters, objective functions, and constraint functions built into LINDOP should suffice
for many airfoil optimization problems. Nevertheless, there are provisions for declaring arbitrary
parameters and implementing arbitrary functions which can then drive the LINDOP optimization
process. An example would be optimizing the overall wing drag with structural weight taken into
account. This would normally require introducing span, chord, etc. as design parameters in addition
to the usual airfoil geometry modes. A custom objective function and constraint functions involving
a structural weight model would be required.

The user-declared parameters (e.g. span, chord in the example above) are initially specified in
file usrpar.xxx, which is read during start-up of LINDOP if it exists. It has the format

NUPAR

UPNAME1 | PVAL1 PEPS1
UPNAME2 | PVAL2 PEPS2

with NUPAR giving the number of parameters to be read in the succeeding lines. UPNAME
is the name of the parameter, with no more than 8 characters, PVAL is the parameter’s initial

16

value, and PEPS is a perturbation to be applied to PVAL for calculating sensitivities via central
finite-differencing. For parameters which are O(1), 0.001 is a reasonable perturbation for single
precision.

The custom objective and constraint functions are implemented by the user-provided routines
USRINI, USRFUN, and USRCON. LINDOP interacts with these routines strictly through the
call lists of USRFUN and USRCON, which exchange the usual built-in design parameters (ALFA,
MACH, MODXK, etc.) and also the user-defined parameters.

The USRINI routine is called once at the start of LINDOP execution, and also when Option
14 is invoked at top level. USRINI does not return anything — it is only used to define common
block data which is to be accessed by USRFUN, USRCON, and possibly any other supporting
routine called by USRFUN and USRCON. In the luserl.f sample routine, the common block
statements are conveniently placed in the USER.INC include file.

The user-defined objective function for one operating point is implemented in SUBROUTINE
USRFUN in source file luser.f, and must be coded for each particular application. A sample
routine is in luseri.f, whose comment header describes the call list.

If the user-defined objective function is selected (option D), SUBROUTINE USRFUN is called by
LINDOP to obtain the function values and also the derivatives via central finite-differencing. This
goes against the general MSES philosophy of analytic differentiation, but here it is appropriate in
order to speed up the implementation of arbitrary optimization problems. The objective function
and derivatives are determined for each operating point, and are then weight-summed over all
the operating points. The point weighting factors w,, are used, exactly as for the built-in objective
functions described above. It advisable that the user-defined objective function be scaled reasonably
well, so as not to cause problems with the graphical display of its numerical values.

After an optimization step is performed and the params.xxx file is written out with Option
2, the usrpar.xxx file (or usrpar.yyy file) is also overwritten with the modified user parameters.
This will then be read again in the next LINDOP invocation. If the user-parameter values in the
file are manually changed for some reason, the current conjugate-direction sequence will be invali-
dated, and the next optimization step should use a steepest-descent direction if the optimization is
being performed in scaled-space (Conjugate-Gradient). If the optimization is being performed in
eigenvector space (Quasi-Newton), the current approximate Hessian will still likely be accurate so
the optimization can proceed as usual.

Arbitrary (but hopefully well-posed!) user-defined constraint(s) can be implemented in SUB-
ROUTINE USRCON in luser.f. Again, a sample routine with a call list description is provided
in luserl.f. For each passed-in constraint index ICON, this routine returns a constraint residual
which will be driven to zero during any least-squares (option M) or general (option 0) optimization
operation. As with the built-in constraints, any user-defined constraint must be toggled at run
time by the user (option I) if it is to be imposed. When LINDOP is executed, all the available
user-defined constraints are listed together with their current residuals. It is advisable to define
these constraints such that they do not have large residuals at the outset, since this might cause
large (i.e. nonlinear) parameter changes for the optimization step or least-squares solution.

14 General Hints

After some experience with LINDOP on real design applications, it has become apparent that
airfoil design trancends simple optimization. The real difficulty is posing the overall optimization

17

problem to be solved — selecting the appropriate operating points, design parameters, objective
function, and constraints. Often this requires at least as much insight into the problem as with the
more traditional inverse methods. Nevertheless, the following heuristic rules have been found to be
quite effective for avoiding many of the potential pitfalls.

14.1 Single vs Multiple operating points

In general, optimizing an airfoil at a single operating point is counterproductive. The resulting
“optimized” airfoil will invariably perform worse away from the design point. This is true for every
type of airfoil designed to date — transonic, low-Re, high-lift, etc. Ideally, the entire operating
envelope is sampled by the selected operating points, but of course this may not be practical in
many cases. The only reasonable use for running single-point LINDOP cases is to examine trends,
or perhaps perform modal-inverse calculations (i.e. least-squares fitting) in lieu of the usual way
via MEDP .

14.2 Few vs Many design modes

Since MISES runtime is not affected significantly by the number of design modes, there is the
natural temptation to use a very large number of modes to make the admissible design as general
as possible. Using many modes also allows control of fine geometric features, such as the detailed
geometry near the leading edge, say. This is clearly beneficial if LINDOP is to be run mainly for
modal-inverse calculations. Interestingly, this advantage is also a drawback for general optimization
calculations. Adding degrees of freedom has the unfortunate side effect of giving the optimizer more
opportunities to find loopholes in whatever optimization problem is being posed!

Example: Consider the simple case of minimizing Cp/Cy, averaged over three operating points,
each having a different shock location on the upper surface. If many geometry shape modes are
being used, the optimizer will try to fine-tune the geometry in the vicinity of each shock foot
in order to weaken it. The resulting airfoil will have three sharp “glitches” at the three shock
locations — surely not what was intended. This tendency can be discouraged by averaging the
Cp/Cr over more operating points so that more shock locations influence the design, or by using
fewer geometry modes. Using fewer modes forces the optimizer to determine only the overall coarse
geometry, rather than micro-managing the detailed geometry of the surface. The Chebyshev modes
are particularly attractive here, since they have more resolution at the leading an trailing edge than
at mid-chord where a typical shock is located.

14.3 Free vs Fixed transition

Optimization should be performed with fixed transition if at all possible. Because the transition
location has a very powerful effect on both C'p and Cpmax, the optimizer will try to drive transition
downstream at the cost of just about everything else. This will inevitably lead to designs with poor
off-design performance somewhere in the operating envelope, even if multiple operating points are
used.

The only cases where free transition has been found appropriate is low Reynolds number airfoil
design, but this requires caution. The optimizer will try to put a bump on the surface to “fill-in”
any separation bubble. This significantly reduces the losses of the bubble, but also aggravates
them if the bubble moves a short distance because of a small change in «, Re, or ne;t. Clearly, the

18

optimizer must not be allowed to make such detailed adjustments to the geometry. This can be
discouraged by averaging over more operating points, and/or using fewer geometry design modes
as with the shocked-airfoil example above.

Warning: If fixed transition is being specified, be constantly on the lookout for free transition
suddenly occurring upstream of the trip. This can easily occur if a C), spike develops at the leading
edge as the airfoil evolves. There will likely be a sudden drastic jump in the objective function and
its gradients. One viable remedy is to reset the trip upstream of the new free transition location,
and continue with the optimization. It is essential to re-initialize the Hessian when this occurs, so
that the optimizer doesn’t get hopelessly confused by the sudden change in the design xcspace.

19

